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Chapter 1

Differential Geometry in a Nutshell

This first chapter gives a light introduction to the theory of smooth manifold. The general idea is to
transport from the usual Euclidean space Rn the tools of differential calculus and linear algebra to more
general spaces, by relying on their local nature. The emphasis is put on the notion of tensors and their
manipulation.

1.1 Smooth manifolds

Roughly speaking, a (smooth) manifold is a topological space that looks locally like Rn. The notion of
atlas makes this idea rigorous.

Definition 1.1. Let M be a topological space and n ≥ 1. An atlas of dimension n is a family
(
(Ui, φi)

)
i∈I

such that

(i) each Ui is an open subset of M and

M =
⋃
i∈I

Ui,

(ii) for each i ∈ I there exists an open subset Vi ⊂ Rn such that

φi : Ui −→ Vi

is an homoemorphism.

Since M is already a topological space, the notion of continuity required in the second item of
Definition 1.1 is well-defined. Moreover, recall that this second item simply requires that φi : Ui −→ Vi
is a continuous bijection with a continuous inverse. For a given i ∈ I, (Ui, φi) is called a local chart
on M. It allows to define local coordinates on M. Indeed, if πj denotes the projection on the j-th
coordinate in Rn (i.e πj(y) = yj for y = (y1, . . . , yn) ∈ Rn) then we define

xj := πj ◦ φi, (1.1)

which is a R-valued function defined on Ui. The functions xj are the coordinate functions associated to
the chart (Ui, φi). We can now define the notion of smooth manifold.

Definition 1.2. Let n ≥ 1. A topological space M is called a smooth manifold of dimension n if

(i) M is Hausdorff, i.e two distinct points always have disjoint open neighborhoods,

(ii) M admits a countable atlas
(
(Ui, φi)

)
i∈I of dimension n such that the transition maps

φi ◦ φ−1
j : φj(Ui ∩ Uj) −→ φi(Ui ∩ Uj)

are smooth diffeomorphisms.
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Note that Rn is obviously a smooth manifold of dimension n (it suffices to choose the identity
function as local charts). The requirement that the topology is Hausdorff in Definition 1.2 avoids wild
and unwanted behaviours. Moreover, the transition maps φi ◦ φ−1

j are defined between open subsets of
Rn so their smoothness is well-defined. The same comment applies for the following definition.

Definition 1.3. Let M and M̃ be two smooth manifolds of dimension n and ñ with
(
(Ui, φi)

)
i∈I and((

Ũi, φ̃i

))
i∈Ĩ

their respective atlases.

• A continuous scalar function f : M −→ R is said to be smooth if

f ◦ φ−1
i : φi(Ui) −→ R

is smooth for all i ∈ I. The set of such functions is denoted C∞(M).

• A continuous function f : M −→ M̃ is said to be smooth if

φ̃j ◦ f ◦ φ−1
i : φi

(
Ui ∩ f−1

(
Ũj

))
−→ φ̃j

(
Ũj

)
is smooth for all (i, j) ∈ I × Ĩ.

According to Definition 1.3, checking the smoothness of a function f : M −→ M̃ a priori requires to
check the smoothness of φ̃j ◦f ◦φ−1

i for all possible choice of i and j. However, thanks to the smoothness
of the transition maps for both atlases, f is smooth if and only if for all p ∈ M there exists local charts
which are neighborhoods of p and f(p) and such that φ̃j ◦ f ◦ φ−1

i is indeed smooth. Remark that the
coordinate functions xj defined in (1.1) and associated to a local chart (U,φ) are smooth scalar functions
on U .

1.2 Vector fields and 1-forms

1.2.1 Tangent vectors and vector fields

Now that manifolds are defined, we can define interesting objects on these structures. The first objects
we need are tangent vectors and vector fields. We assume given M a smooth manifold of dimension
n ≥ 1.

Definition 1.4. Let p ∈ M.

• A tangent vector Xp at the point p is a map Xp : C∞(M) −→ R which is R-linear and satisfies
the Leibniz rule

Xp(fg) = f(p)Xp(g) + g(p)Xp(f)

for all f, g ∈ C∞(M).

• We denote TpM the set of tangent vectors at the point p and call it the tangent space to M at p.

It is obvious that TpM has the structure of a vector space over R. In the next lemma, we construct
useful bump functions (recall that the support of a function f is the closure of {p ∈ M | f(p) ̸= 0}).

Lemma 1.1. Let p ∈ M and U a neighborhood of p. There exists χ ∈ C∞(M) such that 0 ≤ χ ≤ 1,
χ = 1 on some neighborhood of p and supp(χ) ⊂ U .

Proof. See Exercise 3.2.

Even though tangent vectors act on C∞(M) (i.e functions defined on the whole manifold), they are
local objects, as the next lemma shows.

Lemma 1.2. Let p ∈ M and Xp ∈ TpM.

(i) If f, g ∈ C∞(M) are equal on a neighborhood of p, then Xp(f) = Xp(g).
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(ii) If f ∈ C∞(M) is constant on a neighborhood of p, then Xp(f) = 0.

Proof. For the first point of the lemma, set h = f − g, which vanishes on a neighborhood of p. Let χ
be a bump function around p adapted to this neighborhood (see Lemma 1.1), we have χh = 0 on M.
Since by linearity we have Xp(0) = 2Xp(0) and thus Xp(0) = 0, we obtain Xp(χh) = 0. However, the
Leibniz rule gives 0 = χ(p)Xp(h) + h(p)Xp(χ). Since χ(p) = 1 and h(p) = 0 we obtain Xp(h) = 0, and
thus Xp(f) = Xp(g) by linearity. For the second point of the lemma, the first point allows us to assume
that f is equal to some constant C ∈ R on the whole manifold. By linearity we have Xp(f) = CXp(1)
and by the Leibniz rule Xp(1) = 2Xp(1) so that Xp(1) = 0.

This lemma shows that tangent vectors, acting as derivations at a point, are local objects. In
particular, it allows us to define Xp(f) for f only defined on a neighborhood p, such as the coordinate
functions xj associated to a local chart. In the next definition, we define the most important tangent
vectors.

Definition 1.5. If (U,φ) is such a local chart with associated coordinate functions (xi)i=1,...,n and p ∈ U ,
we define the map ∂xi|p : C∞(M) −→ R by

∂xi|p(f) := ∂i
(
f ◦ φ−1

)
(φ(p)), (1.2)

where the ∂i on the RHS denotes the usual partial derivatives with respect to the i-th coordinate in Rn.

Using the Leibniz rule for the usual partial derivatives in Rn, one can check that ∂xi|p belongs to
TpM, but we can say much more than this.

Proposition 1.1. If (U,φ) is a local chart, then
(
∂xi|p

)
i=1,...,n

is a basis of TpM for all p ∈ U . Moreover,

we have

Xp =

n∑
i=1

Xp(x
i)∂xi|p ,

for all Xp ∈ TpM.

Proof. We first prove that
(
∂xi|p

)
i=1,...,n

is linearly independent. For this we compute

∂xi|p(x
j) = ∂i

(
xj ◦ φ−1

)
(φ(p)) = ∂iπ

j(φ(p)) = δji .

Therefore if there exists some number ai such that
∑n
i=1 ai∂xi|p = 0, evaluating this sum at xj gives

aj = 0. This proves the linear independence of
(
∂xi|p

)
i=1,...,n

. Moreover, if Xp ∈ TpM then define

D = Xp −
n∑
i=1

Xp(x
i)∂xi|p .

Since TpM is a vector space we have D ∈ TpM and by definition D(xi) = 0 for all i = 1, . . . , n. Now, let
h ∈ C∞(M). Applying Taylor’s formula in Rn to h ◦φ−1 at φ(p), one can show the existence of smooth
functions h[i] ∈ C∞(M) such that in a neighborhood of p we have

h = h(p) +

n∑
i=1

(
xi − xi(p)

)
h[i].

Using the axioms of Definition 1.4 we obtain

D(h) = D(h(p)) +

n∑
i=1

((
xi(p)− xi(p)

)
D
(
h[i]
)
+ h[i](p)D

(
xi − xi(p)

))
= 0,

where we have used D(xi) = 0 and the second part of Lemma 1.2. This shows that D = 0 and thus that(
∂xi|p

)
i=1,...,n

spans TpM.
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Definition 1.6. The tangent bundle of M is defined to be

TM =
⊔
p∈M

TpM.

We define π : TM −→ M the natural map associating p to any element of TpM.

The next proposition shows that the tangent bundle is much more than simply the collection of all
tangent spaces.

Proposition 1.2. The tangent bundle TM is a smooth manifold of dimension 2n and the projection π
is smooth.

Proof. Given a countable atlas
(
(Ui, φi)

)
i∈I on M, we define an atlas on TM by first considering

Ũi = π−1(Ui). Thanks to Proposition 1.1, for all X ∈ Ũi there exist a unique (βk)k=1,...,n ∈ Rn and a
unique p ∈ Ui such that X =

∑n
k=1 β

k∂xk|p (where the (xk)k=1,...,n are associated to φi), and we can
define

φ̃i(X) =
(
φi(p), β

1, . . . , βn
)
.

We first note that φ̃i

(
Ũi

)
= φi(Ui)×Rn is an open subset of R2n, and that φ̃i is a bijection. Moreover,

we can consider the sets φ̃−1
i (V ) for V any open subset of R2n as a basis for a topology of TM, and one

can check that TM is Hausdorff for this choice. It remains to prove that the transition maps associated

to the atlas
((
Ũi, φ̃i

))
i∈Ĩ

as well as π are smooth. If
(
Ũi, φ̃i

)
and

(
Ũj , φ̃j

)
are two local charts then

φ̃i

(
Ũi ∩ Ũj

)
= φi(Ui ∩ Uj)× Rn, φ̃j

(
Ũi ∩ Ũj

)
= φj(Ui ∩ Uj)× Rn,

and the transition map φ̃j ◦ φ̃−1
i : φi(Ui ∩ Uj)× Rn −→ φj(Ui ∩ Uj)× Rn satisfies

φ̃j ◦ φ̃−1
i

(
z, β1, . . . , βn

)
= φ̃j

(
n∑
k=1

βk∂xk|
φ
−1
i

(z)

)

where the (xk)k=1,...,n are associated to φi. If we denote by (y1, . . . , yn) the coordinates functions
associated to φj , we need to relate ∂xk and ∂yℓ , which is done in Exercise 1.6:

∂xk|
φ
−1
i

(z)
=

n∑
ℓ=1

∂k
(
xℓ ◦ φ−1

i

)
(z)∂yℓ|

φ
−1
i

(z)
.

Therefore we have

φ̃j ◦ φ̃−1
i

(
z, β1, . . . , βn

)
= φ̃j

 n∑
k,ℓ=1

βk∂k
(
xℓ ◦ φ−1

i

)
(z)∂yℓ|

φ
−1
i

(z)


=

(
φj(φ

−1
i (z)),

n∑
k

βk∂k
(
x1 ◦ φ−1

i

)
(z), . . . ,

n∑
k

βk∂k
(
xn ◦ φ−1

i

)
(z)

)
,

which is clearly smooth. Moreover, we have φi ◦ π ◦ φ̃−1
j

(
z, β1, . . . , βn

)
= φi ◦ φ−1

j (z) which is smooth.
This concludes the proof.

Definition 1.7. A vector field is a smooth map X : M −→ TM such that π ◦X = IdM. We denote by
Γ(M) the set of vector fields on M.

Concretely, a vector field is a collection of arrows at each point of the manifold and which depend
smoothly on the point (see Exercise 3.3 for a more geometric definition of tangent vectors). If X ∈ Γ(M),
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then we denote X(p) by Xp, and the condition π ◦ X = IdM rewrites Xp ∈ TpM for all p ∈ M.
Proposition 1.1 shows in particular that in a local chart (U,φ) we have

X =

n∑
i=1

Xi∂xi ,

where xi are the coordinate functions associated to φ and Xi are the smooth functions defined by
Xi(p) = Xp(x

i) and are called the components of X in the coordinate system (xi)i=1,...,n. If f ∈ C∞(M)
and X ∈ Γ(M), we define X(f) to be the function on M defined by X(f)(p) = Xp(f) and we have
X(f) ∈ C∞(M). Moreover, the Leibniz rule holds

X(fg) = fX(g) + gX(f). (1.3)

Therefore, there is a natural identification between Γ(M) and the set of derivations of C∞(M), i.e the
R-linear maps from C∞(M) to itself satisfying the Leibniz rule. This identification allows to define the
Lie bracket [X,Y ] of two vector fields by its action on smooth function

[X,Y ](f) = X(Y (f))− Y (X(f)).

This indeed defines a vector field since it can be shown to satisfy the Leibniz rule (1.3). See Exercise 1.4
for important properties of the Lie bracket.

1.2.2 1-forms

Recall that each tangent space TpM is vector space of dimension n.

Definition 1.8. We define the cotangent space T ∗
pM to be the dual of TpM. We define the cotangent

bundle T ∗M to be

T ∗M =
⊔
p∈M

T ∗
pM.

Note that the usual property of the dual of a vector space implies that T ∗
pM is a vector space of

dimension n. Moreover, if xi are coordinate functions associated to a local chart (U,φ) then

dxi|p(Xp) = Xp(x
i)

defines an element dxi|p of T ∗
pM. The first computation in the proof of Proposition 1.1 rewrites

dxi|p
(
∂xj |p

)
= ∂xj |p(x

i) = δij .

This shows that
(
dxi|p

)
i=1,...,n

is a basis of T ∗
pM which is dual to the basis

(
∂xi|p

)
i=1,...,n

of TpM for

all p ∈ U . By mimicking the proof of Proposition 1.2, we can give T ∗M a natural structure of manifold
of dimension 2n such that the natural projection π∗ : T ∗M −→ M is smooth.

Definition 1.9. A 1-form is a smooth map ω : M −→ T ∗M such that π∗ ◦ ω = IdM. We denote by
Λ1(M) the set of 1-forms on M.

As for vector fields, if ω ∈ Λ1(M) we denote ω(p) by ωp and the condition π∗ ◦ ω = IdM becomes
ωp ∈ T ∗

pM. The main purpose of 1-forms is to be dual objects to vector fields, in the sense that if
ω ∈ Λ1(M) and X ∈ Γ(M) then ω(X)(p) = ωp(Xp) defines an element of C∞(M). By duality, we can
also think of vector fields as acting on 1-forms by the same formula, i.e X(ω) = ω(X). As for vector
fields, a 1-form ω can be locally expressed as

ω =

n∑
i=1

ωidx
i,

where the ωi = ω (∂xi) are the components of ω in the coordinate system (xi)i=1,...,n. The most important
example of a 1-form is the differential of a scalar function.
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Definition 1.10. If f ∈ C∞(M), then its differential is the 1-form locally defined by

df =

n∑
i=1

∂xi(f)dxi.

Since dxi(X) = Xi, one can check that the action of the differential on a vector field is given by
df(X) = X(f) (this could be a definition of df).

Remark 1.1. As their names suggest, the tangent bundle and cotangent bundle are examples of vector
bundles, which roughly speaking are a way to associate smoothly at each point of a manifold an element
of a vector space. In the case of the tangent and cotangent bundle, we associate at each point tangent
vectors and covectors.

1.3 Tensors

The most important objects in mathematical general relativity are tensors, which generalize at the same
time scalar functions, vector fields and 1-forms.

1.3.1 First definitions

There are several ways to define them, we choose the most direct one.

Definition 1.11. A tensor field of type (r, s) on a smooth manifold M is a map

T :
(
Λ1(M)

)r × (Γ(M))
s −→ C∞(M)

which is C∞(M)-multilinear. We denote by T r
s (M) the set of tensor fields of type (r, s).

We have already encountered a natural example of (1, 1)-tensor, since T (ω,X) = ω(X) can be shown
to be C∞(M)-multilinear. However, the map T (ω,X, Y ) = ω([X,Y ]) does not define a (1, 2)-tensor
since T (ω, fX, Y ) ̸= fT (ω,X, Y )..

Let us now see how tensors generalize scalar functions, vector fields and 1-forms. By convention, a
(0, 0)-tensor is the same thing as a scalar function on the manifold. Moreover, since 1-forms act on vector
fields to produce scalar functions, we can identify (0, 1)-tensors with 1-forms. Similarly, we can identify
(1, 0)-tensors with vector fields since vector fields acts by duality on 1-forms. We have thus justified the
following identifications:

T 0
0 (M) ≃ C∞(M), T 0

1 (M) ≃ Λ1(M), and T 1
0 (M) ≃ Γ(M).

Tensors can be multiplied in a particular sense.

Definition 1.12. Let Ti ∈ T ri
si (M) for i = 1, 2. We define the tensor product T1 ⊗ T2 ∈ T r1+r2

s1+s2 (M) by

T1 ⊗ T2 (ω1, . . . , ωr1+r2 , X1, . . . , Xs1+s2)

= T1 (ω1, . . . , ωr1 , X1, . . . , Xs1)× T2 (ωr1+1, . . . , ωr1+r2 , Xs1+1, . . . , Xs1+s2) .

Note that in general we don’t have T1⊗T2 = T2⊗T1, except when one of the tensors is a (0, 0)-tensor,
i.e a smooth function. As vector fields or 1-forms, tensors of any type are local objects, as the next lemma
shows.

Lemma 1.3. Let p ∈ M, T ∈ T r
s (M). Consider 1-forms ω1, . . . , ωr and ω̄1, . . . , ω̄r such that ωi(p) =

ω̄i(p) and vector fields X1, . . . , Xs and X̄1, . . . , X̄s such that Xi(p) = X̄i(p). We have

T (ω1, . . . , ωr, X1, . . . , Xs)(p) = T
(
ω̄1, . . . , ω̄r, X̄1, . . . , X̄s

)
(p).
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Proof. By multilinearity it is enough to show that T (ω1, . . . , ωr, X1, . . . , Xs)(p) = 0 when one of the ωi
or one of the Xi vanishes at p. Say (ω1)p = 0 and consider (U,φ) a local chart around p with coordinate
functions xi, and denote by (ω1)i the components of ω1 in this coordinate system. If χ is any bump
function associated to U (see Lemma 1.1), then χ(ω1)i ∈ C∞(M) and χdxi ∈ Λ1(M) and

χ2ω1 =

n∑
i=1

χ(ω1)iχdx
i

holds globally on M. Therefore, C∞(M)-multilinearity implies

χ2T (ω1, . . . , ωr, X1, . . . , Xs) =

n∑
i=1

χ(ω1)iT
(
χdxi, . . . , ωr, X1, . . . , Xs

)
.

We evaluate this equality between smooth functions at p and use χ(p) = 1 and (ω1)i(p) = 0 (which
follows from our assumption (ω1)p = 0) to conclude the proof.

This lemma allows us to consider tensors as fields over the manifold, i.e as assigning to each point a
multilinear map Tp :

(
T ∗
pM

)r × (TpM)
s −→ R. This also allows us to consider the local expression of

a tensor, i.e the expression of Tp for all p ∈ U where (U,φ) is a local chart. For that, we first use the
identifications between vector fields and 1-forms and (1, 0)-tensors and (0, 1)-tensors to define the tensor
product of coordinates vector fields and coordinates 1-forms associated to (U,φ) as below:

∂xi1 ⊗ · · · ⊗ ∂xir ⊗ dxj1⊗ · · · ⊗ dxjs (ω1, . . . , ωr, X1, . . . , Xs)

= ∂xi1 (ω1)× · · · × ∂xir (ωr)× dxj1(X1)× · · · × dxjs(Xs)

= (ω1)i1 × · · · × (ωr)ir × (X1)
j1 × · × (Xs)

js ,

where (ωk)ik is the ik-th component of ωk and (Xℓ)
jℓ is the jℓ-th component of Xℓ. Using C∞(M)-

multilinearity we obtain

T (ω1, . . . , ωr, X1, . . . , Xs) = T
(
(ω1)i1dx

i1 , . . . , (ωr)irdx
ir , (X1)

j1∂xj1 , . . . , (Xs)
js∂xjs

)
= T

(
dxi1 , . . . ,dxir , ∂xj1 , . . . , ∂xjs

)
(ω1)i1 × · · · × (ωr)ir × (X1)

j1 × · · · × (Xs)
js ,

where we used the famous Einstein convention for summation, i.e we sum over repeated indexes when
one is up and one is down. Defining the components of T in the coordinate system (xi)i=1,...,n by

T i1···irj1···js := T
(
dxi1 , . . . ,dxir , ∂xj1 , . . . , ∂xjs

)
we have obtained the local expression

T = T i1···irj1···js ∂xi1 ⊗ · · · ⊗ ∂xir ⊗ dxj1 ⊗ · · · ⊗ dxjs .

As an application, let us compute the local components of T1 ⊗ T2 for Ti ∈ T ri
si (M). We have

(T1 ⊗ T2)
i1···ir1+r2
j1···js1+s2

= T1 ⊗ T2
(
dxi1 , . . . ,dxir1+r2 , ∂xj1 , . . . , ∂xjs1+s2

)
= T1

(
dxi1 , . . . ,dxir1 , ∂xj1 , . . . , ∂xjs1

)
× T2

(
dxir1+1 , . . . ,dxir1+r2 , ∂

x
js1+1 , . . . , ∂xjs1+s2

)
= (T1)

i1···ir1
j1···js1

(T2)
ir1+1···ir1+r2
js1+1···js1+s2

.

1.3.2 Contracting tensors

Contracting a tensor is a way to simplify it, i.e to go from a (r, s)-tensor to a (r − 1, s − 1)-tensor
(providing r, s ≥ 1). It can be interpreted as a trace, see Exercise 1.7 below. Contractions of tensors of
arbitrary type are built on the contraction of (1, 1)-tensors.

Lemma 1.4. There exists a unique C∞(M)-linear map C1
1 : T 1

1 (M) −→ C∞(M) such that C1
1 (X⊗ω) =

ω(X) for all X ∈ Γ(M) and ω ∈ Λ1(M).
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Proof. Let C1
1 be such a map. Let A ∈ T 1

1 (M) and (U,φ) a local chart with associated coordinate
functions (xi)i=1,...,n. Since C1

1 is C∞(M)-linear we can use the local expression of A to compute the
function C1

1 (A) on U . Since this local expression is A = Aij∂xi ⊗ dxj and again because of the C∞(M)-

linearity of C1
1 we thus have on U :

C1
1 (A) = AijC

1
1

(
∂xi ⊗ dxj

)
= Aijdx

j(∂xi) = Aijδ
j
i = Aii,

where we have used C1
1 (X ⊗ ω) = ω(X). This shows the uniqueness of C1

1 , if it exists. For the
existence, the above computation actually dictates what C1

1 (A) should be, but we need to show that if
two coordinate systems (xi)i=1,...,n and (yi)i=1,...,n overlap, then the two definitions of C1

1 (A) match.
For this we use the transformation rules for the coordinate vector fields and 1-forms from Exercise 1.6:

A(dxi, ∂xi) = A
((
∂k
(
xi ◦ ψ−1

)
◦ ψ
)
dyk,

(
∂i
(
yℓ ◦ φ−1

)
◦ φ
)
∂yℓ
)

=
(
∂k
(
xi ◦ ψ−1

)
◦ ψ
) (
∂i
(
yℓ ◦ φ−1

)
◦ φ
)
A
(
dyk, ∂yℓ

)
,

where (xi)i=1,...,n and (yi)i=1,...,n are associated to φ and ψ respectively. Now if we define f = φ ◦ ψ−1

and z = ψ(p) we have(
∂k
(
xi ◦ ψ−1

)
◦ ψ
) (
∂i
(
yℓ ◦ φ−1

)
◦ φ
)
(p) = ∂k

(
πi ◦ f

)
(z)∂i

(
πℓ ◦ f−1

)
(f(z)),

which is the (ℓ, k) coefficient of the Jacobian matrix of f−1 ◦ f at z, that is δℓk. Therefore we have
A(dxi, ∂xi) = δℓkA

(
dyk, ∂yℓ

)
= A

(
dyi, ∂yi

)
. Therefore C1

1 (A) is a well-defined function on M and its
smoothness can be read on its local expression.

An outcome of the proof of the previous lemma is the effect of the (1, 1) contraction C1
1 in local

coordinates. If A ∈ T 1
1 (M) has local components Aij = A

(
dxi, ∂xj

)
then C1

1 (A) is the smooth function

locally given by Aii (with Einstein’s summation convention).

The extension to a tensor of arbitrary type is straightforward. Let A ∈ T r
s (M) with r, s ≥ 1 and

choose some 1 ≤ a ≤ r and 1 ≤ b ≤ s. For ω1, . . . , ωr−1 some fixed 1-forms and X1, . . . Xs−1 some fixed
vector fields, define Ãab [ω1, . . . , ωr−1, X1, . . . Xs−1] by

Ãab [ω1, . . . , ωr−1, X1, . . . Xs−1](ω,X) = A(ω1, . . . , ωa−1, ω, ωa, . . . , ωr, X1, . . . , Xb−1, X,Xb, . . . , Xs).

Since Ãab [ω1, . . . , ωr−1, X1, . . . Xs−1] is C
∞(M)-multilinear, it defines a (1, 1)-tensor and we define

Cab (A)(ω1, . . . , ωr−1, X1, . . . Xs−1) = C1
1

(
Ãab [ω1, . . . , ωr−1, X1, . . . Xs−1]

)
.

Since Cab (A) is C
∞(M)-multilinear, we have defined a C∞(M)-linear map Cab : T r

s (M) −→ T r−1
s−1 (M),

which is the contraction over the indices a and b. As for the (1, 1) contraction, we can see the effect of
the (a, b) contraction in local components:

(Cab (A))
i1···ir−1

j1···js−1
= Cab (A)

(
dxi1 , . . . ,dxir−1 , ∂xj1 , . . . , ∂xjs−1

)
= C1

1

(
Ãab
[
dxi1 , . . . ,dxir−1 , ∂xj1 , . . . , ∂xjs−1

])
= Ãab

[
dxi1 , . . . ,dxir−1 , ∂xj1 , . . . , ∂xjs−1

]
(dxk, ∂xk)

= A
(
dxi1 , . . . ,dxia−1 ,dxk,dxia , . . . ,dxir−1 , ∂xj1 , . . . , ∂xjb−1 , ∂xk , ∂xja , . . . , ∂xjs−1

)
= A

i1···ia−1kia···ir−1

j1···jb−1kjb···js−1
.

We thus see that the (a, b) contraction translates in coordinates to a sum over the a-th up index and the
b-th low index. The most important property of contractions is that they don’t depend on the coordinate
system, meaning that if A ∈ T 1

1 (M) and if (xi)i=1,...,n and (yi)i=1,...,n are too overlapping coordinate
systems then A(dxk, ∂xk) = A(dyk, ∂xk). Note that this would be false if we were to sum over two vector
fields or two 1-forms: we need one index up and one index down to contract over them.
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1.3.3 Derivation of tensors

For now, we know how to differentiate smooth functions with a vector field. It is in fact possible to
differentiate any kind of tensors, with the notion of tensor derivation.

Definition 1.13. A tensor derivation is a R-linear map

D :
⊔
r,s≥0

T r
s (M) −→

⊔
r,s≥0

T r
s (M)

T 7−→ DT

such that

• it preserves the type, i.e D (T r
s (M)) ⊂ T r

s (M),

• it satisfies the Leibniz rule D(A⊗B) = DA⊗B +A⊗DB,

• it commutes with any contraction, i.e D(C(A)) = C(DA).
Since a tensor derivation D preserves the type and since the tensor product for two (0, 0)-tensors

(i.e smooth functions) is just the multiplication of smooth functions, the above Leibniz rule implies
the standard Leibniz rule for functions D(fg) = D(f)g + fD(g). Since derivations on functions are
vector fields, there must exists X ∈ Γ(M) such that D(f) = X(f) for all f ∈ C∞(M). The following
proposition gives the expression of DT in terms of T .

Proposition 1.3. Let D be a tensor derivation and let T ∈ T r
s (M). For all ωi ∈ Λ1(M) and Xi ∈ Γ(M)

we have

(DT )(ω1, . . . , ωr, X1, . . . , Xs) = D (T (ω1, . . . , ωr, X1, . . . , Xs))

−
r∑

k=1

T (ω1, . . . , ωk−1,Dωk, ωk+1, . . . , ωr, X1, . . . , Xs)

−
s∑
ℓ=1

T (ω1, . . . , ωr, X1, . . . , Xℓ−1,DXℓ, Xℓ+1, . . . , Xs) .

Proof. In local coordinates, we have

A(ω1, . . . , ωr, X1, . . . , Xs) = Ai1···irj1···js(ω1)i1(ωr)ir (X1)
j1 · · · (Xs)

js

so that there exists C a product of r + s contractions such that

A(ω1, . . . , ωr, X1, . . . , Xs) = C (A⊗ ω1 ⊗ · · · ⊗ ωr ⊗X1 ⊗ · · · ⊗Xs) .

Therefore, using the commutation with contraction (and thus with product of contractions) and the
Leibniz rule we get

D (A(ω1, . . . , ωr, X1, . . . , Xs))

= C (D (A⊗ ω1 ⊗ · · · ⊗ ωr ⊗X1 ⊗ · · · ⊗Xs))

= C (DA⊗ ω1 ⊗ · · · ⊗ ωr ⊗X1 ⊗ · · · ⊗Xs)

+

r∑
k=1

C (A⊗ ω1 ⊗ · · · ⊗ ωk−1 ⊗Dωk ⊗ ωk+1 ⊗ · · · ⊗ ωr ⊗X1 ⊗ · · · ⊗Xs)

+

s∑
ℓ=1

C (A⊗ ω1 ⊗ · · · ⊗ ωr ⊗X1 ⊗ · · · ⊗Xℓ−1 ⊗DXℓ ⊗Xℓ+1 ⊗ · · · ⊗Xs)

= (DA)(ω1, . . . , ωr, X1, . . . , Xs)

+

r∑
k=1

A (ω1, . . . , ωk−1,Dωk, ωk+1, . . . , ωr, X1, . . . , Xs)

+

s∑
ℓ=1

A (ω1, . . . , ωr, X1, . . . , Xℓ−1,DXℓ, Xℓ+1, . . . , Xs) ,

which concludes the proof, after isolating the first term.
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This proposition shows that in order to know the derivative of any tensor, it is sufficient to know
how to differentiate smooth functions, 1-forms and vector fields. Actually, we don’t need to know how
to differentiate 1-forms, as next lemma shows.

Lemma 1.5. Let X ∈ Γ(M) and D1
0 : Γ(M) −→ Γ(M) a map satisfying

D1
0(fY ) = X(f)Y + fD1

0(Y )

for all f ∈ C∞(M) and Y ∈ Γ(M). There exists a unique tensor derivation D such that

D|T 0
0 (M)

= X, D|T 1
0 (M)

= D1
0. (1.4)

Proof. If D exists, then for ω ∈ Λ1(M) and Y ∈ Γ(M) we have

X(ω(Y )) = D (C(Y ⊗ ω))

= C (D(Y ⊗ ω))

= C (DY ⊗ ω + Y ⊗Dω)
= ω(DY ) +Dω(Y ),

where we used the commutation with contractions and the Leibniz rule. Therefore for all ω ∈ Λ1(M),
the 1-form Dω is given by

(Dω)(Y ) = X(ω(Y ))− ω
(
D1

0Y
)
,

for all Y ∈ Γ(M). Therefore the action on T 0
1 (M) is uniquely defined, and thus thanks to Proposition

1.3, the action on all tensors is uniquely defined. This proves uniqueness. For the existence, define
D0

0 = X (viewed as a derivation of smooth functions), D0
1 : Λ1(M) −→ Λ1(M) by the above formula

(D0
1ω)(Y ) = D0

0(ω(Y ))− ω
(
D1

0Y
)
. If now r + s ≥ 2 and A ∈ T r

s (M) then define Dr
sA by the formula

(Dr
sA) (ω1, . . . , ωr, X1, . . . , Xs) = D0

0 (A(ω1, . . . , ωr, X1, . . . , Xs))

−
r∑

k=1

A
(
ω1, . . . , ωk−1,D0

1ωk, ωk+1, . . . , ωr, X1, . . . , Xs

)
−

s∑
ℓ=1

A
(
ω1, . . . , ωr, X1, . . . , Xℓ−1,D1

0Xℓ, Xℓ+1, . . . , Xs

)
.

By using the Leibniz rule for D0
0 and D1

0 one can show that D0
1ω is C∞(M) and thus D0

1 that is well-
defined. One can also show that D0

1 satisfies also the Leibniz rule D0
1(fω) = fD0

1ω + X(f)ω which
implies that Dr

sA is C∞(M)-multilinear and thus that Dr
s : T r

s (M) −→ T r
s (M) is well-defined. We

now define a candidate D :
⊔
r,s≥0 T r

s (M) −→
⊔
r,s≥0 T r

s (M) by setting D|T r
s (M)

:= Dr
s . The map D

obviously preserves the type and satisfies (1.4) so it remains to show that D satisfies the Leibniz rule
and commutes with contraction. This is left as an exercise for the reader.

This lemma shows that a tensor derivation is entirely characterized by a vector field, i.e a way to
differentiate smooth functions, and a way to differentiate vector fields (more on this in Exercise 1.9). In
these notes, we will encounter two ways of differentiating vector fields (and thus two tensor derivations),
see Exercise 1.8 for the first one and Chapter 2 for the second one. We highlight an important formula
previously obtained: the derivative of a 1-form is given by

Dω(X) = D(ω(X))− ω(DX), (1.5)

where on the RHS, the derivative of a function and the derivative of a vector field appear.

1.4 Exercises

Exercise 1.1. Consider the sphere

S2 =
{
(x1, x2, x3) ∈ R3

∣∣ (x1)2 + (x2)2 + (x3)2 = 1
}
.
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1. Using the six open subsets of S2

Uj =
{
(x1, x2, x3) ∈ S2

∣∣ xj > 0
}
, Vj =

{
(x1, x2, x3) ∈ S2

∣∣ xj < 0
}
,

for j = 1, 2, 3 and the maps from S2 to R2 defined by

φ1(x) = (x2, x3), φ2(x) = (x1, x3), φ3(x) = (x1, x2),

show that S2 is a 2-dimensional smooth manifold.

2. Same question with the two open subsets U1 = S2 \ {(0, 0, 1)} and U2 = S2 \ {(0, 0,−1)} and the
maps

φ1(x) =

(
x1

1− x3
,

x2

1− x3

)
, φ2(x) =

(
x1

1 + x3
,

x2

1 + x3

)
.

3. Generalize to Sn.

Exercise 1.2. Consider f : R −→ R defined by f(t) = e
1

t2−1 for |t| < 1 and f(t) = 0 for |t| ≥ 1.

1. Show that the convolution

h(t) =
1∫
R f

∫
R
f(t− y)1[−2,2](y)dy

defines a smooth function satisfying 0 ≤ h ≤ 1, supp(h) ⊂ [−3, 3] and h|[−1,1]
= 1.

2. Prove Lemma 1.1.

Exercise 1.3. Let M be a smooth manifold, p ∈ M and define

CpM = {c ∈ C∞((−1, 1),M) | c(0) = p} .

Given a local chart (U,φ) around p, two curves c1, c2 ∈ CpM are said to be equivalent if (φ ◦ c1)′(0) =
(φ ◦ c2)′(0).

1. Show that this equivalence relation ∼ is well-defined and does not depend on the local chart.

2. Assume that φ(p) = 0 and define a vector space structure on T̃pM := CpM/ ∼.

3. Define an isomorphism between T̃pM and TpM.

Exercise 1.4. Let X,Y, Z ∈ Γ(M), a, b ∈ R.

1. Prove that

[aX + Y, Z] = a[X,Z] + [Y,Z],

[X,Y ] = −[Y,X],

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

The last property above is called the Jacobi identity.

2. If f, g ∈ C∞(M), prove that

[fX, gY ] = fg[X,Y ] + fX(g)Y − gY (f)X.

3. Compute the local components of [X,Y ].

Exercise 1.5. Let M be a smooth manifold. For ω ∈ Λ1(M), we define dω by

dω : (X,Y ) ∈ (Γ(M))
2 7−→ X(ω(Y ))− Y (ω(X))− ω([X,Y ]).

1. For all ω ∈ Λ1(M), show that dω is a (0, 2)-tensor (called the exterior derivative of ω).
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2. Show that d : (ω,X, Y ) ∈ Λ1(M)× (Γ(M))
2 7−→ dω(X,Y ) does not define a (1, 2)-tensor.

3. Compute ddf .

Exercise 1.6. Let M be a smooth manifold and (U,φ) and (V, ψ) two local charts such that U ∩ V ̸= ∅,
and denote by (xi)i=1,...,n and (yi)i=1,...,n their coordinates functions.

1. Express ∂xi in terms of the ∂yj ’s and dxi in terms of the dyj’s.

2. Let T ∈ T r
s (M) be a tensor. Express its components in the coordinate system (xi)i=1,...,n with

respect to its components in the coordinate system (yi)i=1,...,n.

Exercise 1.7. Let A ∈ T 1
1 (M) and p ∈ M. Define a linear operator Ãp : TpM −→ TpM and show that

C1
1 (A)(p) = trÃp.

Exercise 1.8. Let X ∈ Γ(M). We define the following operations on smooth functions and vector fields:

LXf := X(f), LXY := [X,Y ].

1. Show that this defines a unique tensor derivation LX (called the Lie derivative with respect to X).

2. Show that LaX+Y = aLX + LY and L[X,Y ] = [LX ,LY ].

3. For f ∈ C∞(M), show that dLXf = LXdf (where d is the differential).

4. For ω ∈ Λ1(M), show that dLXω = LXdω (where d : T 0
1 (M) −→ T 0

2 (M) is defined in Exercise
1.5).

Exercise 1.9. Let D(M) be the vector space of tensor derivations on a smooth manifold M. For
B ∈ T 1

1 (M), we define (DB)10 : Γ(M) −→ Γ(M) by (DB)10(X)(ω) = B(ω,X).

1. Show that for every B ∈ T 1
1 (M) there exists a unique DB ∈ D(M) such that DB|Γ(M)

= (DB)10.

2. Show that

D(M) = {LX | X ∈ Γ(M)} ⊕
{
DB

∣∣ B ∈ T 1
1 (M)

}
,

where the Lie derivative LX is defined in Exercise 1.8.
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Chapter 2

Pseudo-Riemannian Geometry

The real start of general relativity is the definition of a metric tensor, which is by far the most important
type of tensor of these lectures since all the other ones (such as the Riemann tensor) will be defined with
respect to a given metric tensor.

2.1 The metric tensor

We recall some facts about bilinear algebra. If V is a n-dimensional real vector space, then a bilinear
map f : V × V −→ R is said to be symmetric if f(v, w) = f(w, v), non-degenerate if f(v, w) = 0 for all
w implies v = 0. Being non-degenerate is equivalent to the invertibility of any matrix representing f ,
i.e (f(vi, vj))1≤i,j≤n for (vi)i=1,...,n some basis of V . If f is symmetric and non-degenerate the Gram-
Schmidt algorithm ensures the existence of an orthonormal basis (ei)i=1,...,n of V for f , i.e a basis
satisfying f(ei, ej) = 0 if i ̸= j and f(ei, ei) ∈ {−1,+1}. The number of ei such that f(ei, ei) = −1 can
be shown to be independent of the orthonormal basis (this is called Sylvester’s law). Therefore, we can
associate unambiguously to f a sequence (−, . . . ,−,+, . . . ,+) of length n representing how many basis
vectors satisfy f(ei, ei) = −1 or f(ei, ei) = 1, this is the signature of f .

Definition 2.1. Let M be a smooth manifold.

• A pseudo-Riemannian metric tensor g is a (0, 2)-tensor such that for all p ∈ M, gp is a symmetric
non-degenerate bilinear form on TpM with signature independent of p.

• A pseudo-Riemannian manifold (M,g) is a smooth manifold endowed with a pseudo-Riemannian
metric.

Recall that thanks to the locality of tensors (proved in Lemma 1.3), it is meaningful to speak about
gp as a bilinear form on TpM. While most of the forthcoming definitions are valid for any signature,
only two cases are truly interesting.

Definition 2.2. Let (M,g) be a pseudo-Riemannian manifold.

• If the signature of g is (+, . . . ,+), then (M,g) is called a Riemannian manifold.

• If the signature of g is (−,+, . . . ,+), then (M,g) is called a Lorentzian manifold.

Note that in the Riemannian case, the metric tensor defines a scalar product gp on each TpM, since in
addition to being symmetric and non-degenerate, gp is also positive, in the sense that gp(Xp, Xp) ≥ 0 for
all Xp ∈ TpM and gp(Xp, Xp) = 0 implies Xp = 0. In the Lorentzian case this is not the case anymore,
even though we still think of the metric as measuring some kind of physical distance. In particular,
gp(Xp, Xp) can have an arbitrary sign and even vanish.

Definition 2.3. Let (M,g) be a Lorentzian metric, p ∈ M and Xp ∈ TpM.

• If gp(Xp, Xp) > 0, Xp is a spacelike tangent vector.

• If gp(Xp, Xp) < 0, Xp is a timelike tangent vector.
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• If gp(Xp, Xp) = 0, Xp is a null tangent vector.

This can be extended to vector fields X ∈ Γ(M).

The most important example of Riemannian manifold is simply the Euclidean space (Rn,geucl) where
geucl is the so-called Euclidean metric

geucl = dx1 ⊗ dx1 + · · ·+ dxn ⊗ dxn,

where (x1, . . . , xn) are the standard Euclidean coordinates on Rn (note that this formula defines geucl
on the whole space since this is a global coordinate system). The most important example of Lorentzian
manifold is the Minkowski spacetime (R1+n,m) where m is the so-called Minkowski metric

m = −dx0 ⊗ dx0 + dx1 ⊗ dx1 + · · ·+ dxn ⊗ dxn,

where (x0, x1, . . . , xn) are the standard Euclidean coordinates on R1+n. The Minkowski spacetime is the
spacetime of special relativity, and the whole purpose of studying more general Lorentzian manifolds is
to get general relativity. If X = X0∂0 +X1∂1 + · · ·Xn∂n is a vector field in Minkowski spacetime then

m(X,X) = −
(
X0
)2

+
(
X1
)2

+ · · · (Xn)
2
.

Remark 2.1. From now on, we use greek letters instead of latin ones to denote coordinates on a manifold.
This is consistent with the physical interpretation of Lorentzian geometry, where time plays a special role:
x0 is the time coordinate and xi are the spatial coordinates, and greek letters range from 0 to n.

The components of the metric tensor g in a coordinate local chart (xα)α=0,...,n are defined, as usual
for tensors, by gαβ = g(∂xα , ∂xβ ). The defining properties of a metric tensor implies that the matrix
(gαβ)0≤α,β≤n is symmetric and invertible at each point of the manifold. We denote by gαβ the compo-
nents of its inverse, and thanks to the formula for the inverse of a matrix, we have gαβ ∈ C∞(M). The
fact that (gαβ)0≤α,β≤n and (gαβ)0≤α,β≤n are the inverse of one another is of course equivalent to the
fact that their product is the identity matrix, i.e that

gαβgβγ = δαβ ,

where we crucially used Einstein’s summation convention.

Lemma 2.1. Let (M,g) be a pseudo-Riemannian manifold. There exists a unique (2, 0)-tensor, denoted
g−1 and called the inverse metric tensor, satisfying C1

1

(
g−1 ⊗ g

)
= Id where Id(ω,X) = ω(X) is the

identity (1, 1)-tensor. In a local chart we have
(
g−1

)αβ
= gαβ.

Proof. If such a g−1 exists, then the requirement C1
1

(
g−1 ⊗ g

)
= Id reads in coordinates

(
g−1

)αβ
gβγ =

δαγ so that by uniqueness of the inverse of a matrix we must have
(
g−1

)αβ
= gαβ . For the existence, we

would like to define a tensor g−1 be setting its component in a local chart to be gαβ . As this depends on
the chart, we need to show that these components transform as a (2, 0)-tensor (see Exercise 1.6). This
is left as an exercise for the reader (use the transformation rule satisfied by the (0, 2)-tensor g).

An important feature of g and g−1 is that they can be used to change the type of a tensor. We start
starting with the easy case of (1, 0) and (0, 1)-tensors, i.e vector fields and 1-forms.

Lemma 2.2. Let X ∈ Γ(M) and ω ∈ Λ1(M).

• The map Y ∈ Γ(M) 7−→ g(X,Y ) defines a 1-form denoted X♭, its components in a local chart are
(X♭)α = gαβX

β.

• The map ξ ∈ Λ1(M) 7−→ g−1(ω, ξ) defines a vector field denoted ω#, its components in a local
chart are (ω#)α = gαβωβ.

Moreover, the maps ♭ : X ∈ Γ(M) 7−→ X♭ ∈ Λ1(M) and # : ω ∈ Λ1(M) 7−→ ω# ∈ Γ(M) are
C∞(M)-linear isomorphisms satisfying

♭ ◦# = IdΛ1(M), # ◦ ♭ = IdΓ(M). (2.1)
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Proof. The map X♭ defined by X♭(Y ) = g(X,Y ) is C∞(M)-linear and thus defines a (0, 1)-tensor, that
is a 1-form. The map ω# defined by ω#(ξ) = g−1(ω, ξ) is C∞(M)-linear and thus defines a (1, 0)-tensor,
that is a vector field. Moreover, using the local expressions X = Xβ∂β and ω = ωβdx

β we find

(X♭)α = X♭(∂α) = g(X, ∂α) = g(∂β , ∂α)X
β = gαβX

β ,

(ω#)α = ω#(dxα) = g−1(ω,dxα) = g−1(dxβ ,dxα)ωβ = gαβωβ .

The C∞(M)-linearity of the maps ♭ and # is obvious, and the properties (2.1) can thus be checked in
local coordinates

♭ ◦#(ω)α = gαβ(ω
#)β = gαβg

βγωγ = δγαωγ = ωα,

# ◦ ♭(X)α = gαβ(X♭)β = gαβgβγX
γ = δαγX

γ = Xα,

where we used gαβg
βγ = δγα twice.

As we can see on the components expression (X♭)α = gαβX
β and (ω#)α = gαβωβ , the metric is used

to lower indices while the inverse metric is used to raise indices, which explains the use of the musical
notations ♭ and #. Moreover, since the musical isomorphisms are isomorphisms, X and X♭ (or ω and
ω#) contain the exact same information, and are thus viewed as different manifestation of a single object:
vector fields and 1-form are basically the same thing, and we go from one to the other by using either g
or g−1.

2.2 The Levi-Civita connection

It will be important to be able to differentiate a vector field with respect to another one. However the
standard point of view of differentiation, i.e considering the rate of change between two points, does not
work here since Xp and Xq (for X ∈ Γ(M) and p ̸= q) live in different vector spaces so that Xp −Xq is
not defined. We rely instead on the notion of connection.

Definition 2.4. Let M a smooth manifold. A connection D is a map

D : (Γ(M))
2 −→ Γ(M)

(X,Y ) 7−→ DXY

which is C∞(M)-linear with respect to its first argument, R-linear with respect to its second argument
and satisfies the following Leibniz rule

DX(fY ) = X(f)Y + fDXY,

for X,Y ∈ Γ(M) and f ∈ C∞(M).

Thanks to the C∞(M)-linearity with respect to its first argument, the value of DXY at p depends
only on the value of X at p, whereas it depends on the value of Y on a neighborhood of Y . Moreover,
the absence of C∞(M)-linearity with respect to the second argument shows that a connection does not
define a (1, 2)-tensor.

On a given smooth manifold there are a lot of possible connections, since locally we must have

DXY =
(
X(Y k) +XiY jΓkij

)
∂xk

for some smooth functions Γkij satisfying D∂xi∂xj = Γkij∂xk . Exercise ?? shows how one can always define
a connection. Crucially, the existence of a metric tensor allows us to define a canonical connection, called
the Levi-Civita connection.

Theorem 2.1. Let (M,g) be a pseudo-Riemannian manifold. There exists a unique connection D such
that
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(i) D is torsion free, i.e

[X,Y ] = DXY −DYX,

(ii) D is compatible with g, i.e

X (g(Y,Z)) = g (DXY, Z) + g (Y,DXZ) .

Moreover, it is characterized by the Koszul formula

2g(DY Z,X) = Y (g (Z,X)) + Z (g (Y,X))−X (g (Y,Z)) (2.2)

− g (Y, [Z,X]) + g (Z, [X,Y ]) + g (X, [Y,Z]) .

Proof. Since gp is non-degenerate at each p, the formula (2.2) defines a unique vector field DY Z ∈ Γ(M).
Let us show that this indeed define a connection D which is torsion free and compatible with the metric:

• D is a connection. The R-linearity with respect to the second argument is obvious. For the Leibniz
rule we compute

2g(DY (fZ)− Y (f)Z − fDY Z,X) = Y (fg (Z,X)) + fZ (g (Y,X))−X (fg (Y,Z))

− g (Y, [fZ,X]) + fg (Z, [X,Y ]) + g (X, [Y, fZ])

− 2Y (f)g(Z,X)

− fY (g (Z,X))− fZ (g (Y,X)) + fX (g (Y,Z))

+ fg (Y, [Z,X])− fg (Z, [X,Y ])− fg (X, [Y,Z])

= −Y (f)g (Z,X)−X(f)g (Y,Z)

− g (Y, [fZ,X]) + g (X, [Y, fZ])

+ fg (Y, [Z,X])− fg (X, [Y, Z])

= 0,

where we used the Leibniz rule for vector fields and the second question of Exercise 1.4. The
C∞(M)-linearity with respect to the first argument is proved similarily:

2g(DfY Z − fDY Z,X) = 2g(DfY Z,X)− 2fg(DY Z,X)

= fY (g (Z,X)) + Z (g (fY,X))−X (g (fY, Z))

− g (fY, [Z,X]) + g (Z, [X, fY ]) + g (X, [fY, Z])

− fY (g (Z,X))− fZ (g (Y,X)) + fX (g (Y,Z))

+ fg (Y, [Z,X])− fg (Z, [X,Y ])− fg (X, [Y,Z])

= Z(f)g (Y,X)−X(f)g (Y, Z)

+ fg (Z, [X,Y ]) +X(f)g (Z, Y ) + fg (X, [Y,Z])− Z(f)g (X,Y )

− fg (Z, [X,Y ])− fg (X, [Y, Z])

= 0.

• D is torsion free. We compute

2g (DY Z −DZY − [Y,Z], X) = Y (g (Z,X)) + Z (g (Y,X))−X (g (Y,Z))

− g (Y, [Z,X]) + g (Z, [X,Y ]) + g (X, [Y,Z])

− Z (g (Y,X))− Y (g (Z,X)) +X (g (Y,Z))

+ g (Z, [Y,X])− g (Y, [X,Z])− g (X, [Z, Y ])

− 2g ([Y,Z], X)

= 0,

where we used the symmetry of g and the antisymmetry of the Lie bracket (see Exercise 1.4).
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• D is compatible with g. We compute

2 (g (DXY, Z) + g (DXZ, Y )) = X (g (Y,Z)) + Y (g (Z,X))− Z (g (Y,X))

− g (X, [Y, Z]) + g (Y, [Z,X]) + g (Z, [X,Y ])

+X (g (Y, Z)) + Z (g (Y,X))− Y (g (Z,X))

− g (X, [Z, Y ]) + g (Z, [Y,X]) + g (Y, [X,Z])

= 2X (g (Y,Z))− g (X, [Y,Z] + [Z, Y ])

+ g (Y, [Z,X] + [X,Z]) + g (Z, [X,Y ] + [Y,X])

= 2X (g (Y,Z)) ,

where we used the antisymmetry of the Lie bracket.

We have proved the existence of a torsion free connection which is compatible with g. The uniqueness
follows from the fact if a connection is compatible with g then

Y (g (Z,X)) + Z (g (Y,X))−X (g (Y,Z))− g (Y, [Z,X]) + g (Z, [X,Y ]) + g (X, [Y,Z])

= −g (Y, [Z,X]−DZX +DXZ) + g (Z, [X,Y ] +DYX −DXY ) + g (X, [Y,Z] +DY Z +DZY ) .

If morever D is assumed to be torsion free then we indeed obtain the formula (2.2) which completely
characterizes DY Z.

From now on we denote the coordinate vector fields ∂xα by ∂α.

Lemma 2.3. If (xα)α=0,...,n is a coordinate system we define the Christoffel symbols to be the smooth
scalar functions Γαµν such that

D∂µ∂ν = Γαµν∂α.

They are given by

Γαµν =
1

2
gαβ (∂µgνβ + ∂νgµβ − ∂βgµν) .

In particular we have Γαµν = Γανµ.

Proof. We start with the Koszul formula applied with ∂µ, ∂ν and ∂α:

2g(D∂µ∂ν , ∂α) = ∂µ (g (∂ν , ∂α)) + ∂ν (g (∂µ, ∂α))− ∂α (g (∂µ, ∂ν))

− g (∂µ, [∂ν , ∂α]) + g (∂ν , [∂α, ∂µ]) + g (∂α, [∂µ, ∂ν ])

= ∂µ (g (∂ν , ∂α)) + ∂ν (g (∂µ, ∂α))− ∂α (g (∂µ, ∂ν)) ,

where we used the fact that the commutator of two coordinate vector fields vanishes. Using the definition
of the Christoffel symbols and the metric components we thus get

2Γβµνgαβ = ∂µgνα + ∂νgµα − ∂αgµν .

We multiply each of these equations by gαγ and sum over α and obtain

2Γβµνgαβg
αγ = gαγ (∂µgνα + ∂νgµα − ∂αgµν) .

Using gαβg
αγ = δγβ concludes the proof.

In the case of Minkowski spacetime (R3+1,m), the Christoffel symbols identically vanish in Euclidean
coordinates (same for the Euclidean space). Therefore, in Euclidean coordinates D∂α∂β = 0 and the
Levi-Civita connection reduces to the standard partial derivatives: if Y = Y β∂β then DαY =

(
∂αY

β
)
∂β .

Despite the notation, Christoffel symbols are not the component of a tensor! See Exercise 2.2 for an
example where they vanish in a coordinate system and don’t vanish in another one. By using the Leibniz
rule satisfied by every connection and Lemma 1.5 we can define a tensor derivation with the Levi-Civita
connection.

Lemma 2.4. Let X ∈ Γ(M). There exists a unique tensor derivation, still denoted DX , such that
DX(f) = X(f) and DX(Y ) = DXY for all f ∈ C∞(M) and Y ∈ Γ(M).

This tensor derivation has very nice properties (compared for instance with the Lie derivative), see
Exercise 2.4.
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2.3 Curvature

As Exercise 1.8 shows, if the Lie bracket [X,Y ] vanishes then the commutator [LX ,LY ] vanishes. How-
ever, if we consider the Levi-Civita connection instead of the Lie derivative we obtain a very important
object ultimately linked to the geometric idea of curvature.

2.3.1 The Riemann curvature tensor and its properties

Definition 2.5. Let (M,g) be a pseudo-Riemannian manifold.

• We define the Riemann endomorphism R : Γ(M)3 −→ Γ(M) by

R(X,Y )Z = DXDY Z −DYDXZ −D[X,Y ]Z. (2.3)

• We define the Riemann tensor Rm : Γ(M)4 −→ C∞(M) by

Rm(W,Z,X, Y ) = g(W,R(X,Y )Z).

Lemma 2.5. The Riemann tensor is a (0, 4)-tensor.

Proof. Since the C∞(M)-linearity of the Riemann tensor with respect to the first argument is obvious,
we only need to prove the C∞(M)-multilinearity of the Riemann endomorphism. If f ∈ C∞(M) we
have

R(X,Y )fZ = DXDY (fZ)−DYDX(fZ)−D[X,Y ](fZ)

= DX (Y (f)Z + fDY Z)−DY (X(f)Z + fDXZ)− [X,Y ](f)Z + fD[X,Y ]Z

= X(Y (f))Z + Y (f)DXZ +X(f)DY Z + fDXDY Z

− Y (X(f))Z −X(f)DY Z − Y (f)DXZ − fDYDXZ − [X,Y ](f)Z + fD[X,Y ]Z

= fR(X,Y )Z,

where we used the Leibniz rule and the definition of the Lie bracket. Moreover

R(fX, Y )Z = DfXDY Z −DYDfXZ −D[fX,Y ]Z

= fDXDY Z −DY (fDXZ)−Df [X,Y ]−Y (f)XZ

= fDXDY Z − Y (f)DXZ − fDYDXZ − fD[X,Y ]Z + Y (f)DXZ

= fR(X,Y )Z,

where we used [fX, Y ] = f [X,Y ] − Y (f)X. The last property R(X, fY )Z = fR(X,Y )Z follows from
the antisymmetry of the map R(·, ·)Z.

The next proposition gathers algebraic and differential properties of the Riemann tensor.

Proposition 2.1. The Riemann tensor satisfies the following properties:

(i) Antisymmetry and symmetry:

Rm(W,Z,X, Y ) = −Rm(W,Z, Y,X), (2.4)

Rm(W,Z,X, Y ) = −Rm(Z,W,X, Y ), (2.5)

Rm(W,Z,X, Y ) = Rm(X,Y,W,Z). (2.6)

(ii) First Bianchi identity:

Rm(W,X, Y, Z) +Rm(W,Y,Z,X) +Rm(W,Z,X, Y ) = 0, (2.7)

(iii) Second Bianchi identity:

DXRm(V,W, Y, Z) +DYRm(V,W,Z,X) +DZRm(V,W,X, Y ) = 0. (2.8)
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Proof. The antisymmetry property (2.4) directly follows from (2.3). For (2.5), we use three times the
compatibility of D with g:

Rm(W,Z,X, Y ) = g(DXDY Z,W )− g(DYDXZ,W )− g(D[X,Y ]Z,W )

= X(g(DY Z,W ))− Y (g(DXZ,W )) + g(DXZ,DYW )− g(DXW,DY Z)

− [X,Y ](g(Z,W )) + g(D[X,Y ]W,Z)

= −X(g(Z,DYW )) + Y (g(Z,DXW )) + g(DXZ,DYW )− g(DXW,DY Z)

+ g(D[X,Y ]W,Z)

= −g(DXZ,DYW )− g(Z,DXDYW ) + g(DY Z,DXW ) + g(Z,DYDXW )

+ g(DXZ,DYW )− g(DXW,DY Z) + g(D[X,Y ]W,Z)

= −Rm(Z,W,X, Y ).

For the first Bianchi identity (2.7), we use twice the torsion free property of D:

R(X,Y )Z +R(Z,X)Y +R(Y, Z)X

= DDY ZX + [X,DY Z]−DDXZY − [Y,DXZ]−DDXY Z +DDYXZ

+DDXY Z + [Z,DXY ]−DDZYX − [X,DZY ]−DDZXY +DDXZY

+DDZXY + [Y,DZX]−DDYXZ − [Z,DYX]−DDY ZX +DDZYX

= [X,DY Z −DZY ] + [Y,DZX −DXZ] + [Z,DXY −DYX]

= [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]]

= 0,

where we have used the Jacobi identity for the Lie bracket (see Exercise 1.4). For (2.6), we first deduce
from (2.7) the four identities

Rm(W,Y,X,Z) +Rm(W,X,Z, Y ) +Rm(W,Z, Y,X) = 0,

Rm(X,W,Z, Y ) +Rm(X,Z, Y,W ) +Rm(X,Y,W,Z) = 0,

Rm(Z,X, Y,W ) +Rm(Z, Y,W,X) +Rm(Z,W,X, Y ) = 0,

Rm(Y,Z,W,X) +Rm(Y,W,X,Z) +Rm(Y,X,Z,W ) = 0.

Adding these four identities and regrouping terms together with (2.4) and (2.5) leads to

0 = 2 (Rm(Z,W,X, Y )−Rm(X,Y, Z,W )) ,

which concludes the proof of (2.6). One way to prove (2.8) is to compute by brute force, but there is a
more clever one which benefits from the tensorial nature of (2.8). Indeed, thanks to this tensorial nature,
it is enough to prove (2.8) in a particular local coordinates system. We consider p ∈ M and consider
local normal coordinates (xρ)ρ, which are such that the Christoffel symbols vanish in this coordinates
system (such coordinates can be defined with the so-called exponential map). In particular, this implies
that (Dα∂β)p = 0 in this coordinates system. Using this and the definition of a tensor derivation we
obtain at p:

DαRm(∂β , ∂γ , ∂µ, ∂ν) = ∂α (Rm(∂β , ∂γ , ∂µ, ∂ν)) = g(∂β ,DαR(∂µ, ∂ν)∂γ),

where we also the used the compatibility with the metric. We continue using [∂µ, ∂ν ] = 0:

DαRm(∂β , ∂γ , ∂µ, ∂ν) = g(∂β ,DαDµDν∂γ −DαDνDµ∂γ).

This gives:

DαRm(∂β , ∂γ , ∂µ, ∂ν) +DµRm(∂β , ∂γ , ∂ν , ∂α) +DνRm(∂β , ∂γ , ∂α, ∂µ)

= g(∂β , (DαDµDν −DαDνDµ +DµDνDα −DµDαDν +DνDαDµ −DνDµDα)∂γ)

= g(∂β , ((DαDµ −DµDα)Dν + (DµDν −DνDµ)Dα + (DνDα −DαDν)Dµ)∂γ)

= R(∂β ,Dν∂γ , ∂α, ∂µ) +R(∂β ,Dα∂γ , ∂µ, ∂ν) +R(∂β ,Dµ∂γ , ∂ν , ∂α)

= 0,

where we again used [∂µ, ∂ν ] = 0 to reconstruct the Riemann tensor.
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2.3.2 The Einstein vacuum equations

Because of its type, the Riemann tensor Rm is too complicated and we would like to simplify it by
contracting it. However we have only learned how to contract tensors acting on at least one 1-form and
one vector field, which strictly speaking is not the case of the Riemann tensor. Nevertheless, with the
help of the inverse metric we can transform one vector field into a 1-form and then contract. To be very
rigorous, we define the following musical map # : T 0

s (M) −→ T 1
s−1(M) defined by

T#(ω,X1, . . . , Xs−1) = T (ω#, X1, . . . , Xs−1).

We can now define the metric contraction C1a : T 0
s (M) −→ T 0

s−2(M) (for 1 < a ≤ s) by

C1a(T ) = C1
a−1(T

#).

In coordinates this gives

C1a(T )j1···js−2
= gkℓTkj1···ja−2ℓja−1···js−2

.

Definition 2.6. Let (M,g) be a pseudo-Riemannian manifold. We define the Ricci tensor and the
scalar curvature by

Ric = C13(Rm) and R = C12(Ric).

The Ricci tensor is thus a (0, 2)-tensor. In a local chart we have Ricαβ = gµνRmµανβ . The
symmetries of the Riemann tensor gathered in Proposition 2.1 imply that the metric contraction defining
the Ricci tensor is the only interesting one since C12(Rm) = 0 and C14(Rm) = −C13(Rm). They also
imply that the Ricci tensor is a symmetric tensor since

Ricαβ −Ricβα = gµνRmµανβ − gνµRmνβµα = gµνRmµανβ − gµνRmµανβ = 0,

where we used (2.6) and the symmetry of g. The scalar curvature is a (0, 0)-tensor, i.e a smooth function,
locally given by R = gαβRicαβ .

Now that we have the Ricci tensor and the scalar curvature, we can finally define the Einstein
equations of general relativity: if (M,g) is a Lorentzian manifold, the Einstein equations for g are

Ric− 1

2
Rg = T, (2.9)

where T is a (0, 2)-tensor called the stress energy tensor. It has to be divergence free and it describes
the energy and matter in the spacetime. Several comments are in order:

• The fact that the RHS of (2.9) is divergence free necessarily implies that the LHS is also divergence
free (this will be proved below). The stress energy tensor T usually depends on additional fields
with physical meaning, such as a scalar field ϕ, an electromagnetic field Fµν , a fluid uµ, a density of
particles f(x, p)... The divergence free condition then recasts the wave equation for ϕ, the Maxwell
equation for F , the Euler equation for u or the Vlasov equation for f . As every divergence free
condition, these equations are thus naturally interpreted as conservation laws for various physical
quantities.

• The LHS of (2.9), usually called the Einstein tensor, is a divergence free symmetric (0, 2)-tensor
which depends only on zeroth, first and second order derivatives of g and which is linear in the
second order derivatives (see next section for a proof of that). A theorem of Lovelock proves that
in dimension 3 + 1, the only such tensors are Ric− 1

2Rg and g itself. This explains why the only
modification of the equations (2.9) that preserves the above mentioned properties is the addition of
a term of the form Λg to the LHS, where Λ ∈ R is called the cosmological constant. Another way
of obtaining the Einstein tensor is by minimizing the so-called Einstein-Hilbert action

∫
M RdVolg.

• The tensorial nature of the various curvature related objects considered here concretely implies that
if (2.9) or (2.10) hold in one coordinates system, then they hold in any coordinates system. This is
the relativity principle. The equivalence principle, made famous by Einstein’s thought experiment,
translates mathematically to the existence of normal coordinates along a geodesic (since in such
coordinates the Christoffel symbols vanish and the geodesic equation is simply ẍ = 0).
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In order to define the divergence of a tensor, we first define D : T 0
s (M) −→ T 0

s+1(M) by

DT (X0, X1, . . . , Xs) = DX0
T (X1, . . . , Xs).

If now T ∈ T 0
s (M) with s ≥ 1, we define its divergence to be the (0, s− 1)-tensor defined by

divT = C12(DT ).

Proposition 2.2. We have

div

(
Ric− 1

2
Rg

)
= 0.

Proof. We first note that

div(fg) = C12(D(fg))

= C12(fDg +Df ⊗ g)

= C12(df ⊗ g)

= df,

where we used that Dg = 0 and Df = df . Therefore we need to prove that divRic = 1
2dR. We start

from (2.8)

DXRm(V,W, Y, Z) +DYRm(V,W,Z,X) +DZRm(V,W,X, Y ) = 0.

We use (2.4) (which can be shown to also hold for DZRm) for the last term and rewrite the middle
term with the definition of D:

DXRm(V,W, Y, Z) +DRm(Y, V,W,Z,X)−DZRm(V,W, Y,X) = 0.

Since DXg−1 = 0, we have C1a(DXT ) = DX(C1a(T )) and therefore applying C13 to the above identity
gives

DXRic(W,Z) + divRm(W,Z,X)−DZRic(W,X) = 0.

Using the definition of D for the first term this rewrites

DRic(X,W,Z) + divRm(W,Z,X)−DZRic(W,X) = 0.

We now apply C12 to this equality (using again the commutativity with DZ):

divRic+ C13(divRm) = dR,

where we used DZR = dR(Z). Again because of Dg−1 = 0 we can prove that C13(divRm) = divRic,
so that we have proved 2divRic = dR, which concludes the proof.

2.3.3 Wave coordinates

If T = 0, then the Einstein equations (2.9) simplify: contracting Ric = 1
2Rg with g−1 gives R = n

2R so
that R = 0 (if n ≥ 3). Therefore the Einstein vacuum equations are simply

Ric = 0. (2.10)

In Minkowski spacetime (R1+3,m) the Riemann tensor identically vanishes and thus this spacetime is
an obvious solutions of (2.10). If we think of T as the source term in (2.9) and thus of (2.10) as being an
equation without source, we might deduce that (R1+3,m) is the only solution to (2.10). This is far from
being the case! We give two arguments in favor of the non-triviality of (2.10). First, shortly after the
publication of Einstein’s theory of general relativity, Schwarzschild discovered the so-called Schwarzschild
metric

gSch = −
(
1− 2m

r

)
dt⊗ dt+

(
1− 2m

r

)−1

dr ⊗ dr + r2gS2 ,
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where m > 0. By considering more adapted coordinates, this metric can be shown to solve (2.10) on
the manifold Rt × {r > 0} × S2 and its Riemann tensor does not vanish (in particular implying that the
Schwarzschild spacetime is not isometric to Minkowski). The physical meaning of gSch is the description
of a black hole without rotation, which is thus a non-trivial solution of the Einstein vacuum equations.
However, this argument is not entirely satisfactory since one could see gSch as a solution of (2.9) with a
measured-valued stress-energy tensor concentrated at r = 0.

The best way to show that (2.10) admits plenty of regular solutions is actually to exhibit its PDE
nature. In order to do so, we define the so-called wave operator associated to any Lorentzian metric g:

□gf = C12(Hess(f)),

where Hess(f) is defined in Exercise 2.5. In local coordinates this becomes

□gf = gαβHess(f)(∂α, ∂β) = gαβ
(
∂α∂βf − Γµαβ∂µf

)
.

Note that in the case of Minkowski spacetime in Euclidean coordinates we recover the standard wave
operator □ = −∂2t + ∆, where ∆ = ∂i∂i. Note that in the case of a Riemannian metric the very same
definition leads to the so-called Laplace-Beltrami operator ∆g, which generalizes ∆.

Proposition 2.3. In any coordinates system, the Ricci tensor admits the decomposition

Ricµν = −1

2
□ggµν +

1

2
(gρµ∂νH

ρ + gρν∂µH
ρ) + Pµν(g)(∂g, ∂g),

where Hρ := gαβΓραβ and where Pµν(g)(∂g, ∂g) denotes terms of the form g−1g−1∂g∂g.

Proof. Since we don’t need the exact expression of the semilinear terms of the form g−1g−1∂g∂g, we

will denote them by O
((

g−1∂g
)2)

. In coordinates we have:

Ricµν = gαβg (∂α,R(∂β , ∂ν)∂µ)

= gαβ (g (∂α,DβDν∂µ)− g (∂α,DνDβ∂µ))

= gαβ
(
g
(
∂α,Dβ

(
Γρνµ∂ρ

))
− g

(
∂α,Dν

(
Γρβµ∂ρ

)))
= gαβgαρ∂βΓ

ρ
νµ − gαβgαρ∂νΓ

ρ
βµ +O

((
g−1∂g

)2)
= ∂βΓ

β
νµ − ∂νΓ

β
βµ +O

((
g−1∂g

)2)
.

By differentiating the relation gαβgβγ = δαγ we find that ∂αg
µν = −gρµgσν∂αgρσ which schematically

reads ∂g−1 = g−1g−1∂g. Therefore, when differentiating the Christoffel symbols, we schematically get

∂
(
g−1∂g

)
= g−1∂2g +

(
g−1∂g

)2
. Therefore we have

Ricµν =
1

2
gαβ (∂β∂µgαν + ∂β∂νgαµ − ∂β∂αgµν − ∂ν∂µgαβ − ∂ν∂βgαµ + ∂ν∂αgµβ) +O

((
g−1∂g

)2)
= −1

2
□ggµν +

1

2
gαβ (∂β∂µgαν − ∂ν∂µgαβ + ∂ν∂αgµβ) +O

((
g−1∂g

)2)
,

where we used the fact that □gf = gαβ∂α∂βf + O
(
g−1g−1∂g∂f

)
. On the other hand we have Hρ =

gαβgρσ
(
∂αgβσ − 1

2∂σgαβ
)
and thus

1

2
(gρµ∂νH

ρ + gρν∂µH
ρ) =

1

2
gαβgρσ

(
gρµ∂ν

(
∂αgβσ − 1

2
∂σgαβ

)
+ gρν∂µ

(
∂αgβσ − 1

2
∂σgαβ

))
+O

((
g−1∂g

)2)
=

1

2
gαβ (∂ν∂αgβµ + ∂µ∂αgβν − ∂µ∂νgαβ) +O

((
g−1∂g

)2)
,

which concludes the proof.
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The previous proposition shows that if one can construct coordinates (xρ)ρ=0,...,3 such that Hρ = 0,
then the Einstein vacuum equations become

□ggµν = 2Pµν(g)(∂g, ∂g).

In the vocabulary of PDEs, this is a system of 10 coupled wave equations for the metric coefficients gµν .
This system is nonlinear for two reasons:

• The RHS is a quadratic expression in first order derivatives of the metric ∂g, such terms are called
semilinear. Though we did not give its exact expression, its structure plays a crucial role in many
problems, such as the long-time behaviour of solutions or the absence of shocks in the evolution.

• The wave operator on the LHS depends obviously on the solution g, such term is called quasilinear.
The existence of gravitational waves can be predicted from this wave operator, even though a proof
of their physicality (i.e that they cannot be erased by a change of coordinates) requires more work.

Coordinates (xρ)ρ=0,...,3 such that Hρ = 0 are called wave coordinates since Hρ = −□gx
ρ. The fact that,

with an appropriate choice of coordinates, the Einstein vacuum equations can be recast as a system of
wave equations hints at a Cauchy formulation of these equations in analogy with the Cauchy formulation
for the standard wave equation {

□u = F,

(u, ∂tu)|{t=0} = (f, h),
(2.11)

where F , f and h are given. Of course, the geometric nature of the Einstein vacuum equations would
require several modifications of (2.11):

• The hypersurface {t = 0} in Minkowski is replaced by the concept of a spacelike hypersurface Σ,
i.e a n− 1-dimensional submanifold of M with timelike normal vector field N .

• Similarly, u|{t=0} is replaced by the induced metric g|Σ on the hypersurface, and ∂tu|{t=0} is replaced
by the Lie derivative LNg|Σ (since DNg = 0 we cannot use the Levi-Civita connection here).

Another consequence of the geometric nature of general relativity is that the Cauchy data (g,LNg)|Σ
cannot be freely chosen, they need to solve the so-called constraint equations. This distinguishes dras-
tically the Einstein vacuum equations from (2.11), where (f, h) can be freely chosen. Nevertheless,
understanding the existence, uniqueness and behaviour of solutions to (2.11) (and its semilinear and
quasilinear generalisations) is a necessary prerequisite to the study of the Einstein vacuum equations
and their solutions.

2.4 Exercises

Exercise 2.1. Let M be a smooth manifold and D and D̃ two connections.

1. Show that

(ω,X, Y ) ∈ Λ1(M)× (Γ(M))2 7−→ ω (DXY −DYX − [X,Y ])

defines a (1, 2)-tensor (called the torsion tensor of D).

2. Show that

(ω,X, Y ) ∈ Λ1(M)× (Γ(M))2 7−→ ω
(
DXY − D̃XY

)
defines a (1, 2)-tensor.

Exercise 2.2. Let (R3,geucl) be the 3-dimensional Euclidean space. Compute the components of geucl
and the Christoffel symbols in spherical coordinates.

Exercise 2.3. Let (M,g) be a pseudo-Riemannian manifold and f ∈ C∞(M). We define another
pseudo-Riemannian metric g̃ = e2fg. Give the expression of D̃, the Levi-Civita connection associated to
g̃, in terms of D, the Levi-Civita connection associated to g.
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Exercise 2.4. Let (M,g) be a pseudo-Riemannian manifold and X ∈ Γ(M). Show that the tensor
derivation DX satisfies the following properties

(i) DXg = 0 and DXg−1 = 0.

(ii) It commutes with the musical isomorphisms (hint: rewrite them with standard contractions and
tensor product).

Exercise 2.5. Let (M,g) be a pseudo-Riemannian manifold and f ∈ C∞(M). We define the Hessian
of f by Hess(f)(X,Y ) = DXdf(Y ) for X,Y ∈ Γ(M). Show that Hess(f) is a symmetric (0, 2)-tensor.

Exercise 2.6. If V ∈ Γ(M), we define its curl by

curl(V )(X,Y ) = g(DXV, Y )− g(DY V,X).

1. Show that curl(V ) = dV ♭ where d is defined in Exercise 1.5.

2. Define gradf = (df)# and show that curl(gradf) = 0.

Exercise 2.7. If X ∈ Γ(M), we define its divergence by divX = divX♭, where X♭ is seen as a (0, 1)-
tensor.

1. Compute the expression of divX in coordinates.

2. Show that □gf = div(gradf).

3. Show the alternative expression

divX =
1√

−detg
∂β

(√
−detgXβ

)
,

where detg denotes the determinant of the matrix (gαβ)0≤α,β≤3.

Exercise 2.8. Let (M,g) be a pseudo-Riemannian manifold.

1. Let φ ∈ C∞(M) such that □gφ = 0 and define the scalar field stress-energy tensor

T = dφ⊗ dφ− 1

2
g(gradφ, gradφ)g.

Show that divT = 0.

2. Let F be an antisymmetric (0, 2)-tensor satisfying the Maxwell vacuum equations

DαFβγ +DβFγα +DγFαβ = 0,

divF = 0,

and define the electromagnetic stress-energy tensor

Tµν = gαβFµαFνβ − 1

4
gµνg

αρgβσFαβFρσ.

Show that divT = 0.
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Chapter 3

Correction of the exercises

3.1 Exercises from Chapter 1

Exercise 3.1.

1. Since each point on S2 has at least one non-zero coordinates, we indeed have

S2 =
3⋃
j=1

(Uj ∪ Vj).

The maps φj are homeomorphisms from Uj to the open disk D :=
{
(x, y) ∈ R2

∣∣ x2 + y2 < 1
}
and

from Vj to D. For instance, the inverse of φ1 : V1 −→ D is given by φ−1
1 (x, y) =

(
−
√
1− x2 − y2, x, y

)
.

Therefore
(
(U1, φ1), (U2, φ2), (U3, φ3), (V1, φ1), (V2, φ2), (V3, φ3)

)
is an atlas for S2. To prove that

it makes S2 a smooth manifold we only need to show that the transition maps are smooth where
they are defined (since the Hausdorff property is obvious). Note that Ui ∩ Uj ̸= ∅, Vi ∩ Vj ̸= ∅ and
Ui ∩ Vj ̸= ∅ if and only if i ̸= j. Therefore, there are 12 intersections to consider and thus 24
transition maps to consider. We only treat three of them:

• Consider (U1, φ1) and (U2, φ2). We have U1 ∩ U2 =
{
(x1, x2, x3) ∈ S2

∣∣ x1, x2 > 0
}

and if
(x, y) ∈ φ1(U1 ∩ U2) then

φ2 ◦ φ−1
1 (x, y) = φ2

(√
1− x2 − y2, x, y

)
=
(√

1− x2 − y2, y
)
.

• Consider (V2, φ2) and (V3, φ3). We have V2 ∩ V3 =
{
(x1, x2, x3) ∈ S2

∣∣ x2, x3 < 0
}

and if
(x, y) ∈ φ2(V2 ∩ V3) then

φ3 ◦ φ−1
2 (x, y) = φ3

(
x,−

√
1− x2 − y2, y

)
=
(
x,−

√
1− x2 − y2

)
.

• Consider (V1, φ1) and (U3, φ3). We have V1 ∩ U3 =
{
(x1, x2, x3) ∈ S2

∣∣ x1 < 0, x3 > 0
}
and

if (x, y) ∈ φ3(V1 ∩ U3) then

φ1 ◦ φ−1
3 (x, y) = φ1

(
x, y,

√
1− x2 − y2

)
=
(
y,
√
1− x2 − y2

)
.

All these maps are smooth so S2 with this atlas is a smooth manifold.

2. We obviously have S2 = U1 ∪ U2. The map φ1 is a homeomorphism from U1 to R2 with inverse

φ−1
1 (x, y) =

(
2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
.
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The map φ2 is a homeomorphism from U2 to R2 with inverse

φ−1
2 (x, y) =

(
2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
1− x2 − y2

x2 + y2 + 1

)
.

Therefore
(
(U1, φ1), (U2, φ2)

)
is an atlas for S2. We have U1 ∩ U2 = S2 \ {(0, 0, 1), (0, 0,−1)} and

φi(U1 ∩ U2) = R2 \ {(0, 0} for i = 1, 2. Moreover for (x, y) ̸= (0, 0) we have

φ2 ◦ φ−1
1 (x, y) = φ1 ◦ φ−1

2 (x, y) =

(
x

x2 + y2
,

y

x2 + y2

)
,

which is a smooth function. Therefore S2 with this atlas is a smooth manifold.

3. We can generalize both examples to Sn for n ≥ 1.

• Define U±
j =

{
(x1, . . . , xn+1) ∈ Sn

∣∣ ± xj > 0
}
and φj

(
(x1, . . . , xn+1)

)
= (x1, . . . , xj−1, xj+1, . . . , xn).

We can show that
(
(U+

1 , φ1), . . . , (U
+
n+1, φn+1), (U

−
1 , φ1), . . . , (U

−
n+1, φn+1)

)
is an atlas making

Sn a smooth manifold composed of 2(n+ 1) charts.

• Define U± = Sn \ {(0, . . . , 0,±1} and

φ± ((x1, . . . , xn, xn+1)
)
=

(
x1

1∓ xn+1
, . . . ,

xn

1∓ xn+1

)
.

We can show that
(
(U+, φ+), (U−, φ−)

)
is an atlas making Sn a smooth manifold composed

of 2 charts.

Exercise 3.2.

1. We first note that f is non-zero and smooth (which can be proved by induction on the derivatives
f (k) of f) and that suppf = [−1, 1]. Differentiating under the integral symbol (using integrability
of smooth functions on compact sets) we can also prove that h is smooth. Changing variable we
rewrite h as

h(t) =
1∫
R f

∫ t+2

t−2

f

which already shows that 0 ≤ h ≤ 1. Moreover if |t| > 3, then [t− 2, t+ 2] ∩ [−1, 1] = ∅ so that

h(t) = 0. Finally, if |t| ≤ 1, then [−1, 1] ⊂ [t− 2, t+ 2] and thus
∫ t+2

t−2
f =

∫
R f so that h(t) = 1.

2. We start by dilating h: for ε > 0 we define hε(t) = h
(
t
ε

)
. It is a smooth function satisfying

0 ≤ hε ≤ 1, supp(hε) ⊂ [−3ε, 3ε] and h|[−ε,ε]
= 1. Now, let p ∈ M and U a neighborhood of

p. Let (V, φ) a local chart around p such that V ⊂ U . If ε > 0 is sufficiently small, we have

B4ε :=
{
x ∈ Rn

∣∣∣ ∥x− φ(p)∥22 ≤ 4ε
}
⊂ φ(V ). On V we can define N(q) =

∑n
i=1

(
xi(q)− xi(p)

)2
so that φ−1(Bη) = {q ∈ V | N(q) ≤ η} for all η ≤ 4ε. We set χ = hε ◦ N on V and χ = 0
elsewhere. On φ−1(Bε) we have N ≤ ε so that χ = 1 on φ−1(Bε) (which is indeed a neighborhood
of p), and suppχ ⊂ U . Finally the smoothness of χ follows from the smoothness of hε and the fact
that there is only one local chart to check.

Exercise 3.3.

1. Since c(0) = p and φ is defined in a neighborhood of p, the function φ ◦ c is well-defined on
a neighborhood of 0 for every c ∈ CpM and (φ ◦ c)′(0) is well-defined (since both φ and c are
smooth). Moreover if φ and ψ are two local charts around p, we have φ ◦ c = φ ◦ψ−1 ◦ψ ◦ c so that
the chain rule in Rn implies

(φ ◦ c)′(0) = d
(
φ ◦ ψ−1

)
ψ(p)

(ψ ◦ c)′(0),

where d
(
φ ◦ ψ−1

)
ψ(p)

is the standard differential of the function φ ◦ ψ−1 at ψ(p) ∈ Rn (remember

that (φ ◦ c)′(0) and (ψ ◦ c)′(0) are vectors in Rn). However, since the transition maps φ ◦ ψ−1

are supposed to be smooth diffeomorphisms (where they are defined), their differential is a linear
isomorphism and

(φ ◦ c1)′(0) = (φ ◦ c2)′(0) ⇐⇒ (ψ ◦ c1)′(0) = (ψ ◦ c2)′(0).
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2. For c ∈ CpM we denote by [c]p ∈ T̃pM the equivalence class of c. For c, c1, c2 ∈ CpM and λ ∈ R
we define

[c1]p + [c2]p :=
[
φ−1 ◦ (φ ◦ c1 + φ ◦ c2)

]
p
,

λ[c]p :=
[
φ−1 ◦ (λφ ◦ c)

]
p
.

We need to show that the right hand sides don’t depend on the representant, i.e that if c1 ∼ c̃1 and
c2 ∼ c̃2 then

φ−1 ◦ (φ ◦ c1 + φ ◦ c2) ∼ φ−1 ◦ (φ ◦ c̃1 + φ ◦ c̃2) .

Since φ ◦φ−1 ◦ (φ ◦ c1 + φ ◦ c2) = φ ◦ c1 +φ ◦ c2, the linearity of the derivatives of a function from
R to Rn implies what we want. An identical reasoning proves that if c ∼ c̃ then φ−1 ◦ (λφ ◦ c) ∼
φ−1◦(λφ ◦ c̃). Therefore the above operations are well-defined on T̃pM. All the algebraic properties
that a vector space need to satisfy are obvious, except maybe who is the zero element for +: it
is the equivalence class 0T̃pM of the constant path c(t) = p, and we indeed have [c]p + [0]p =[
φ−1 ◦ (φ ◦ c+ φ(p))

]
p
= [c]p since φ(p) = 0.

3. For [c]p ∈ T̃pM we define Ψ([c]p) ∈ TpM to be the derivation at p defined by

Ψ([c]p) (f) = (f ◦ c)′(0)

for all f ∈ C∞(M). We first need to show that (f ◦ c)′(0) does not depend on the representant in
the equivalence class [c]p. We compute using again the chain rule:

(f ◦ c)′(0) = (f ◦ φ−1 ◦ φ ◦ c)′(0)
= ∂i(f ◦ φ−1)(φ(p))πi ((φ ◦ c)′(0))
= ∂xi|p(f)π

i ((φ ◦ c)′(0)) ,

where (xi)i=1,...,n is associated with φ. Therefore, if c1 ∼ c2 then (f ◦ c1)′(0) = (f ◦ c2)′(0) and

Ψ : T̃pM −→ TpM is a well-defined map. The linearity of Ψ follows from

Ψ([c1]p + [c2]p) (f) = (f ◦ φ−1 ◦ (φ ◦ c1 + φ ◦ c2))′(0)
= ∂xi|p(f)π

i ((φ ◦ c1 + φ ◦ c2)′(0))
= ∂xi|p(f)π

i ((φ ◦ c1)′(0)) + ∂xi|p(f)π
i ((φ ◦ c2)′(0))

= Ψ ([c1]p) (f) + Ψ ([c2]p) (f)

and

Ψ(λ[c]p) (f) = (f ◦ φ−1 ◦ (λφ ◦ c))′(0)
= ∂xi|p(f)π

i ((λφ ◦ c)′(0))
= ∂xi|p(f)λπ

i ((φ ◦ c)′(0))
= λΨ([c]p) (f),

where we used the linearity of πi and of the derivatives for a function from R to Rn. It remains to
prove that Ψ is an isomorphism. A previous computation shows that

Ψ([c]p) = πi ((φ ◦ c)′(0)) ∂xi|p .

If j = 1, . . . , n and cj(t) := φ−1 (0, . . . , 0, t, 0, . . . , 0) (where the t is in the j-th slot) then πi ((φ ◦ cj)′(0)) =
δij and Ψ([cj ]p) = ∂xj |p . Since

(
∂xj |p

)
j=1,...,n

is a basis of TpM and Ψ is linear this shows that Ψ

is surjective. Moreover, if Ψ([c]p) = 0, then (φ ◦ c)′(0) = 0. However, if we denote c0 the constant
path equal to p, then (φ ◦ c0)′(0) = 0 and thus c ∼ c0 i.e [c]p = [c0]p = 0T̃pM. This shows that Ψ is
injective.
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Exercise 3.4.

1. We use the definition of the Lie bracket of two vector fields as the following derivation of smooth
functions:

[X,Y ](f)(p) = X(Y (f))(p)− Y (X(f))(p).

The three identities then follow from straightforward computations.

2. We prove that the two sides of the identity have the same action on any smooth function f . Using
the Leibniz rule we have

[fX, gY ](h) = fX(gY (h))− gY (fX(h))

= fgX(Y (h)) + fX(g)Y (h)− gfY (X(h))− gY (f)X(h)

= fg[X,Y ](h) + fX(g)Y (h)− gY (f)X(h).

3. We use the local expression of X and Y , the first identity of the first question and the second
question:

[X,Y ] =

[
n∑
i=1

Xi∂xi ,

n∑
i=1

Y j∂xj

]
=

∑
i,j=1,...,n

[Xi∂xi , Y j∂xj ]

=
∑

i,j=1,...,n

(
XiY j [∂xi , ∂xj ] +Xi∂xi(Y j)∂xj − Y j∂xj (Xi)∂xi

)
.

However, using the definition of the ∂xi we have

∂xi(∂xjf)(p) = ∂xi|p(∂xjf)

= ∂i
(
∂xjf ◦ φ−1

)
(φ(p))

= ∂i∂j(f ◦ φ−1)(φ(p))

so that the standard formula ∂i∂j = ∂j∂i in Rn implies [∂xi , ∂xj ] = 0 on M. Therefore, we obtain

[X,Y ]j = X(Y j)− Y (Xj).

Exercise 3.5.

1. Since dω(X,Y ) = −dω(Y,X) we only need to check C∞(M)-linearity with respect to the first
argument. Let f ∈ C∞(M), using ω(fX) = fω(X) and [fX, Y ] = f [X,Y ] − Y (f)X (see the
previous exercise) we obtain

dω(fX, Y ) = fX(ω(Y ))− Y (ω(fX))− ω([fX, Y ])

= fX(ω(Y ))− Y (fω(X))− ω(f [X,Y ]− Y (f)X)

= fX(ω(Y ))− fY (ω(X))− Y (f)ω(X)− fω(f [X,Y ]) + Y (f)ω(X)

= fdω(X,Y ).

2. According to the previous question we only need to check the C∞(M)-linearity with respect to the
1-form. Using the definition of the differential of a smooth function df(X) = X(f) we find

d(fω)(X,Y ) = X(fω(Y ))− Y (fω(X))− fω([X,Y ])

= df(X)ω(Y )− ω(X)df(Y ) + fdω(X,Y )

so that d(fω) = df ⊗ ω − ω ⊗ df + fdω and d : (ω,X, Y ) ∈ Λ1(M) × (Γ(M))
2 7−→ dω(X,Y ) is

not C∞(M)-linear with respect to its first argument and thus does not define a tensor.
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3. Using df(X) = X(f) we obtain

ddf(X,Y ) = X(df(Y ))− Y (df(X))− df([X,Y ])

= X(Y (f))− Y (X(f))− [X,Y ](f)

= 0,

where we used the definition of the Lie bracket. This shows that ddf = 0.

Exercise 3.6.

1. For the coordinate vector fields, we compute their action on any f ∈ C∞(M). If p ∈ M we have

∂xi(f)(p) = ∂xi|p(f)

= ∂i(f ◦ φ−1)(φ(p))

= ∂i(f ◦ ψ−1 ◦ ψ ◦ φ−1)(φ(p)).

Using the chain rule in Rn and Einstein’s summation convention we obtain

∂xi(f)(p) =

n∑
ℓ=1

∂i
(
πℓ ◦ ψ ◦ φ−1

)
(φ(p))∂ℓ(f ◦ ψ−1)(ψ ◦ φ−1(φ(p)))

= ∂i
(
yℓ ◦ φ−1

)
(φ(p))∂ℓ(f ◦ ψ−1)(ψ(p))

= ∂i
(
yℓ ◦ φ−1

)
(φ(p))∂yℓ(f)(p)

so that

∂xi =
(
∂i
(
yℓ ◦ φ−1

)
◦ φ
)
∂yℓ . (3.1)

For coordinate 1-forms, we start with the local expression of any 1-form applied to dxi:

dxi = dxi
(
∂yk
)
dyk.

Using the symmetric version of (3.1) we compute

dxi
(
∂yk
)
=
(
∂k
(
xℓ ◦ ψ−1

)
◦ ψ
)
dxi (∂xℓ)

=
(
∂k
(
xℓ ◦ ψ−1

)
◦ ψ
)
δiℓ

= ∂k
(
xi ◦ ψ−1

)
◦ ψ

so that

dxi =
(
∂k
(
xi ◦ ψ−1

)
◦ ψ
)
dyk. (3.2)

2. We use the following notations for the components of T in the two coordinate systems (xi)i=1,...,n

and (yi)i=1,...,n:

T i1···irj1···js = T
(
dxi1 , . . . ,dxir , ∂xj1 , . . . , ∂xjs

)
, T ĩ1···̃ir

j̃1···j̃s
= T

(
dyĩ1 , . . . ,dyĩr , ∂yj̃1 , . . . , ∂yj̃s

)
.

Now using (3.1) and (3.2) and the C∞(M)-multilinearity of tensors we obtain

T i1···irj1···js =
(
∂ĩ1
(
xi1 ◦ ψ−1

)
◦ ψ
)
× · · · ×

(
∂ĩr
(
xir ◦ ψ−1

)
◦ ψ
)

×
(
∂j1

(
yj̃1 ◦ φ−1

)
◦ φ
)
× · · · ×

(
∂js

(
yj̃s ◦ φ−1

)
◦ φ
)

× T ĩ1···̃ir
j̃1···j̃s

.

In particular, T vanishes in the coordinate system (xi)i=1,...,n (i.e T i1···irj1···js = 0 for all choices of

indices) if and only if it vanishes in the coordinate system (yi)i=1,...,n.
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Exercise 3.7. Let (v1, . . . , vn) be a basis of TpM and (v∗1 , . . . , v
∗
n) be the dual basis of T ∗

pM, i.e the only

basis of T ∗
pM satisfying v∗i (vj) = δij. We define Ãp to be the only endormorphism of TpM such that

Ãp(vi) =

n∑
j=1

Ap(v
∗
j , vi)vj .

In the basis (v1, . . . , vn), the matrix representing Ãp is (Ap(v
∗
i , vj))1≤i,j≤n and thus the trace of Ãp is∑n

i=1Ap(v
∗
i , vi) which indeed matches C1

1 (A)(p) and does not depend on the basis of TpM.

Exercise 3.8.

1. According to the lecture notes, it suffices to show that LX is a derivation on vector fields. Using
the second question of Exercise 1.4 we obtain

LX(fY ) = [X, fY ]

= f [X,Y ] +X(f)Y

= (LXf)Y + fLXY.

2. The set of tensor derivations is a vector space so that aLX + LY is again a tensor derivation.
Therefore we are asked to prove that two tensor derivations are equal, and thanks to Lemma 1.5
in the lecture notes it is enough to check that they coincide on functions and vector fields, which is
completely obvious. Similarly, one can show that the Lie bracket of two tensor derivations is again
a tensor derivation (as we did for derivations of functions when we defined the Lie bracket of two
vector fields). We have L[X,Y ]f = [X,Y ]f and [LX ,LY ]f = X(Y (f)) − Y (X(f)) so L[X,Y ] and
[LX ,LY ] coincide on functions by definition of the Lie bracket. Moreover we have L[X,Y ](Z) =
[[X,Y ], Z] and

[LX ,LY ](Z) = [X, [Y,Z]]− [Y, [X,Z]] = [[X,Y ], Z]

where we used the Jacobi identity for the Lie bracket. Therefore L[X,Y ] and [LX ,LY ] coincide on
vector fields and are thus equal thanks to Lemma 1.5.

3. Let Y ∈ Γ(M), we compute the two sides. By definition of the differential of the smooth function
LXf = X(f) we have

(dLXf)(Y ) = Y (LXf) = Y (X(f)).

By definition of a tensor derivation we find

(LXdf)(Y ) = X(Y (f))− df([X,Y ]) = X(Y (f))− [X,Y ](f).

Finally, by definition of the Lie bracket we get

(LXdf)(Y ) = X(Y (f))−X(Y (f)) + Y (X(f)) = (dLXf)(Y ).

4. Let W,Z ∈ Γ(M), we compute

dLXω(W,Z) =W (LXω(Z))− Z (LXω(W ))− LXω([W,Z])
=W (X(ω(Z)))− Z (X(ω(W )))−W (ω([X,Z])) + Z (ω([X,W ]))

−X(ω([W,Z])) + ω([X, [W,Z]]),

where we used the expression of LXω(Z) = X(ω(Z)) − ω([X,Z]) (recall the definition of the Lie
derivative on functions and vector fields). We commute W and X and Z and X in the first two
terms:

dLXω(W,Z) = X (W (ω(Z))) + [W,X](ω(Z))−X (Z(ω(W ))) + [X,Z](ω(W ))

−W (ω([X,Z])) + Z (ω([X,W ]))

−X(ω([W,Z])) + ω([X, [W,Z]])

= X (dω(W,Z))− [X,W ](ω(Z)) + [X,Z](ω(W ))

−W (ω([X,Z])) + Z (ω([X,W ]))

− ω([W, [Z,X]])− ω([Z, [X,W ]])
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where we recognized the expression of dω(W,Z) and also used the Jacobi identity for the Lie bracket
(first question of Exercise 1.4). Using again the definition of d we get

dLXω(W,Z) = X (dω(W,Z))− dω([X,W ], Z)− dω(W, [X,Z]) = LXdω(W,Z).

Exercise 3.9.

1. If such DB exists, let us show that DB(f) = 0 for all f ∈ C∞(M). Let f ∈ C∞(M), X ∈ Γ(M),
the Leibniz rule gives on the one hand (DB)(fX) = f(DB)(X) +DB(f)X. On the other hand the
condition DB|Γ(M)

= (DB)10 implies that DB|Γ(M)
is C∞(M)-linear so that (DB)(fX) = f(DB)(X).

Therefore we have DB(f)X = 0 for all f and X, which shows that DB|C∞(M)
= 0. Lemma 1.5 of

the notes then shows the existence and uniqueness of DB ∈ D(M) such that DB|C∞(M)
= 0 and

DB|Γ(M)
= (DB)10.

2. We need to show that the map (X,B) ∈ Γ(M) × T 1
1 (M) 7−→ LX + DB ∈ D(M) is a linear

isomorphism:

• The linearity follows from the linearity of X 7−→ LX and B 7−→ DB.
• Assume that (X,B) ∈ Γ(M) × T 1

1 (M) is such that LX + DB is the zero tensor derivation.
Since DB|C∞(M)

= 0 we obtain X(f) = 0 for all f ∈ C∞(M) which shows that X = 0 and

DB = 0. Since DB|Γ(M)
= (DB)10 this implies (DB)10 = 0 and thus B = 0. This shows that the

map (X,B) 7−→ LX +DB is injective.

• Let D ∈ D(M). Since derivations on functions are the same as vector fields there exists
a unique X ∈ Γ(M) such that D(f) = X(f). Set D̃ = D − LX . We have D̃|C∞(M)

= 0

which implies that D̃|Γ(M)
is C∞(M)-linear (thanks to the Leibniz rule for D̃). For (ω, Y ) ∈

Λ1(M) × Γ(M) we define B(ω, Y ) = D̃|Γ(M)
(Y )(ω) which defines a (1, 1)-tensor since it is

indeed C∞(M)-multilinear. By construction we have D̃|Γ(M)
= (DB)10 so that the uniqueness

part of the previous question implies D̃ = DB and D = LX + DB. This shows that the map
(X,B) 7−→ LX +DB is surjective.

We see in fact that the Lie derivative is quite superfluous here and we could get the same result
with say the covariant derivative DX from Chapter 2.

3.2 Exercises from Chapter 2

Exercise 3.10. The spherical coordinates are (r, θ, φ) such that the Euclidean coordinates (x1, x2, x3)
are given by

x1 = r sin θ cosϕ, x2 = r sin θ sinϕ, x3 = r cos θ.

We want to compute g(∂r, ∂r), g(∂r, ∂θ) etc. (where we denote geucl simply by g), therefore we would like
to express the coordinate vector fields of (r, θ, ϕ) in terms of the coordinate vector fields of (x1, x2, x3).
For this we use the formula (3.1) of Exercise 1.6:

∂yi =
(
∂i
(
xℓ ◦ ψ−1

)
◦ ψ
)
∂xℓ .

where (yi)i=1,...,n are associated to ψ. The definition of the spherical coordinates is

x1 ◦ ψ−1(r, θ, ϕ) = r sin θ cosϕ, x2 ◦ ψ−1(r, θ, ϕ) = r sin θ sinϕ, x3 ◦ ψ−1(r, θ, ϕ) = r cos θ,

which is equivalent to saying that ψ(r sin θ cosϕ, r sin θ sinϕ, r cos θ) = (r, θ, ϕ). Therefore we have

∂r = ∂r (r sin θ cosϕ) ∂x1 + ∂r (r sin θ sinϕ) ∂x2 + ∂r (r cos θ) ∂x3

= sin θ cosϕ∂x1 + sin θ sinϕ∂x2 + cos θ∂x3 ,
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∂θ = ∂θ (r sin θ cosϕ) ∂x1 + ∂θ (r sin θ sinϕ) ∂x2 + ∂θ (r cos θ) ∂x3

= r cos θ cosϕ∂x1 + r cos θ sinϕ∂x2 − r sin θ∂x3 ,

∂ϕ = ∂ϕ (r sin θ cosϕ) ∂x1 + ∂ϕ (r sin θ sinϕ) ∂x2 + ∂ϕ (r cos θ) ∂x3

= −r sin θ sinϕ∂x1 + r sin θ cosϕ∂x2 .

Therefore, using g(∂xi , ∂xj ) = δij we get for instance

grr = g(∂r, ∂r)

= sin2 θ cos2 ϕ+ sin2 θ sin2 ϕ+ cos2 θ

= 1.

The other non-zero components are gθθ = r2 and gϕϕ = r2 sin2 θ. Moreover, one can check that the
non-zero Christoffel symbols are

Γrθθ = −r, Γrϕϕ = −r sin2 θ, Γθrθ =
1

r
,

Γθϕϕ = − sin θ cos θ, Γϕrϕ =
1

r
, Γϕθϕ =

cos θ

sin θ
.

Exercise 3.11.

1. The C∞(M)-linearity with respect to the 1-form is obvious, so we only need to check the C∞(M)-
multilinearity of (X,Y ) 7−→ DXY −DYX − [X,Y ]. Let f ∈ C∞(M), using the Leibniz rule for D
and a property of the Lie bracket we obtain

DX(fY )−DfYX − [X, fY ] = X(f)Y + fDXY − fDYX − f [X,Y ]−X(f)Y

= f (DXY −DYX − [X,Y ]) .

Since (X,Y ) 7−→ DXY −DYX− [X,Y ] is antisymmetric this also proves that DfXY −DY (fX)−
[fX, Y ] = f (DXY −DYX − [X,Y ]).

2. The C∞(M)-linearity with respect to the 1-form and the first vector field is obvious, so we only
need to check the C∞(M)-linearity of Y 7−→ DXY − D̃XY for X fixed. Let f ∈ C∞(M), using
the Leibniz rule for D and D̃ we obtain:

DX(fY )− D̃X(fY ) = X(f)Y + fDXY −X(f)Y − fD̃XY = f
(
DXY − D̃XY

)
.

Exercise 3.12. Let (xα)α be a local coordinate system. If we denote by Γ̃ the Christoffel symbols of g̃
we have

Γ̃αµν =
1

2
g̃αβ (∂µg̃νβ + ∂ν g̃µβ − ∂βg̃µν)

=
1

2
e−2fgαβe2f (∂µgνβ + ∂νgµβ − ∂βgµν) + e−2fgαβe2f ((∂µf)gνβ + (∂νf)gµβ − (∂βf)gµν)

= Γαµν + δαν ∂µf + δαµ∂νf − gµνg
αβ∂βf.

Therefore if X,Y ∈ Γ(M) we have

D̃XY
α = X(Y α) +XµY ν Γ̃αµν

= DXY
α +X(f)Y α + Y (f)Xα − g(X,Y )gαβ∂βf.

This shows that D̃XY = DXY +X(f)Y + Y (f)X − g(X,Y )gradgf .
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Exercise 3.13. For the second part of the lemma we start with the formula for DXg(Y,Z) obtained
with Proposition 1.3:

DXg(Y,Z) = DX (g(Y, Z))− g (DX(Y ), Z)− g (Y,DX(Z))

= X (g(Y,Z))− g (DXY, Z)− g (Y,DXZ)

where we have used the definition of the tensor derivation DX . This is precisely identically zero thanks
to the compatibility of the Levi-Civita connection with g. Now let us prove that DXg−1 = 0. We have
C1

1 (g
−1 ⊗ g) = Id and one can show that DXId = 0 (actually this is true for any tensor derivation)

so that the commutation with standard contraction, the Leibniz rule and the fact that DXg = 0 gives
C1

1 (DXg−1 ⊗ g) = 0. The non-degeneracy of g then implies that DXg−1 = 0. Finally, rewriting the
musical isomorphisms with contractions and tensor product we obtain

DXY
♭ = DX

(
C1

1 (Y ⊗ g)
)

= C1
1 (DX(Y ⊗ g))

= C1
1 (DXY ⊗ g)

= (DXY )
♭
,

where we used the commutation of any tensor derivation with contractions and the fact that DXg = 0.
An almost identical computation shows that DXω

# = (DXω)
#

(using DXg−1 = 0 this time).

Exercise 3.14. By definition of a tensor derivation we have

Hess(f)(X,Y ) = X(df(Y ))− df(DXY ) = X(Y (f))−DXY (f),

where we also used the definition of the differential. Therefore

Hess(f)(X,Y )−Hess(f)(Y,X) = X(Y (f))−DXY (f)− Y (X(f)) +DYX(f)

= ([X,Y ]−DXY +DYX) (f)

= 0,

where we used the torsion free property of the metric.

Exercise 3.15.

1. By definition of d and of the musical isomorphisms we have

dV ♭(X,Y ) = X(V ♭(Y ))− Y (V ♭(X))− V ♭([X,Y ])

= X(g(V, Y ))− Y (g(V,X))− g(V, [X,Y ]).

Using now the compatibility if D with g and its torsion free property we get

dV ♭(X,Y ) = g(DXV, Y )− g(DY V,X) + g(V,DXY −DYX − [X,Y ])

= g(DXV, Y )− g(DY V,X).

2. Thanks to the first question we have curl(gradf) = d(gradf)♭. Thanks to the definition of the

gradient we get curl(gradf) = d
(
(df)#

)♭
. Thanks to the properties of the musical isomorphisms

we get curl(gradf) = ddf = 0 where we also used a result from Exercise 1.5.

Exercise 3.16.

1. By definition of the divergence of the 1-form X♭ we have in coordinates

divX = gαβDαX
♭(∂β)

= gαβ
(
∂α(X

♭(∂β))−X♭(Dα∂β)
)

= gαβ
(
∂αXβ − ΓµαβXµ

)
,

where we use the standard shortcut Xα = (X♭)α.
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2. If X = gradf then by definition of the gradient we have X♭ = df and Xα = ∂αf so that

div(gradf) = gαβ
(
∂α∂βf − Γµαβ∂µf

)
= □gf .

3. We have

1√
−detg

∂β

(√
−detgXβ

)
= ∂βX

β +
Xβ

√
−detg

∂β

(√
−detg

)
= ∂βX

β +
Xβ

2 detg
∂β detg.

Using the Jacobi formula for the differential of the determinant we obtain ∂β detg = detgtr
(
g−1∂βg

)
where here g denotes its matrix representation and g−1 its inverse. Therefore ∂β detg = detggµν∂βgµν
and

1√
−detg

∂β

(√
−detgXβ

)
= ∂βX

β +
Xβ

2
gµν∂βgµν

= gαβ∂βXα +Xρ

(
∂βg

ρβ +
1

2
gβρgµν∂βgµν

)
,

where we used Xβ = gβρXρ. Thanks to the expression of the Christoffel symbols we have

∂βg
ρβ +

1

2
gβρgµν∂βgµν =

1

2
gρσ

(
−2gβα∂βgασ + gµν∂σgµν

)
= −gµνΓρµν ,

so that we obtain

1√
−detg

∂β

(√
−detgXβ

)
= gαβ∂βXα − gµνΓρµνXρ = divX.

Exercise 3.17.

1. Since div(fg) = df we need to prove that div(dφ⊗ dφ) = 1
2d (g(gradφ, gradφ)). For the LHS we

find

D(dφ⊗ dφ)(X,Y, Z) = DX(dφ⊗ dφ)(Y,Z) = Hess(φ)(X,Y )dφ(Z) + Hess(φ)(X,Z)dφ(Y )

so that

div(dφ⊗ dφ)(Z) = C12(Hess(φ))dφ(Z) + C12(dφ⊗Hess(φ))(Z) = C12(dφ⊗Hess(φ))(Z)

where we used C12(Hess(φ)) = □gφ = 0. For the RHS we have

1

2
d (g(gradφ, gradφ)) (Z) =

1

2
Z(g(gradφ, gradφ)) = g(DZgradφ, gradφ).

Using the musical isomorphisms we get DZgradφ = DZ(dφ)
# = (DZdφ)

#
and thus this rewrites

1

2
d (g(gradφ, gradφ)) (Z) = g−1(DZdφ,dφ)

= gαβDZdφ(∂α)dφ(∂β)

= C12(dφ⊗Hess(φ))(Z)

where we used the symmetry of the Hessian. This concludes the proof.

2. We compute using the expression of the divergence of a symmetric (0, 2)-tensor in coordinates and
use several times DXg = 0 and DXg−1 = 0 and te Leibniz rule :

divTν = gγµDγTµν

= gγµgαβDγ (FµαFνβ)−
1

4
gαρgβσDν (FαβFρσ)

= gγµgαβFµαDγFνβ + gαβFνβg
γµDγFµα − 1

4
gαρgβσFαβDνFρσ − 1

4
gαρgβσFρσDνFαβ .
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The second term vanishes because of the second Maxwell equation, the third and fourth are the same
so that

divTν = gγµgαβFµαDγFνβ − 1

2
gαρgβσFαβDνFρσ

= F γβ
(
DγFνβ +

1

2
DνFβγ

)
,

where we also used the antisymmetry of F and defined F γβ := Fµαg
µγgαβ. Note that the antisym-

metry of F implies F γβ = −F βγ . We now contract the first Maxwell equation with F γβ:

F γβDνFβγ + F γβDβFγν + F γβDγFνβ = 0.

Thanks to the antisymmetry of Fαβ and Fαβ the middle term becomes F γβDβFγν = F βγDβFνγ
which is the same as F γβDγFνβ, i.e the third term. Therefore we have proved F γβDνFβγ +
2F γβDγFνβ = 0 which precisely implies divT = 0.
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