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Chapter 1

Differential Geometry in a Nutshell

This first chapter gives a light introduction to the theory of smooth manifold. The general idea is to
transport from the usual Euclidean space R™ the tools of differential calculus and linear algebra to more
general spaces, by relying on their local nature. The emphasis is put on the notion of tensors and their
manipulation.

1.1 Smooth manifolds

Roughly speaking, a (smooth) manifold is a topological space that looks locally like R™. The notion of
atlas makes this idea rigorous.

Definition 1.1. Let M be a topological space andn > 1. An atlas of dimension n is a family ((Ui, @1))
such that

iel

(1) each U; is an open subset of M and
M=,
iel
(i) for each i € I there exists an open subset V; C R™ such that
vi Ui —V;
is an homoemorphism.

Since M is already a topological space, the notion of continuity required in the second item of
Definition is well-defined. Moreover, recall that this second item simply requires that ¢; : U; — V;
is a continuous bijection with a continuous inverse. For a given i € I, (U;, ;) is called a local chart
on M. It allows to define local coordinates on M. Indeed, if 7/ denotes the projection on the j-th
coordinate in R” (i.e 7/ (y) = ¢/ for y = (y',...,y™) € R") then we define

2l =7 o ¢y, (1.1)

which is a R-valued function defined on U;. The functions 27 are the coordinate functions associated to
the chart (U, ¢;). We can now define the notion of smooth manifold.

Definition 1.2. Let n > 1. A topological space M is called a smooth manifold of dimension n if
(i) M is Hausdorff, i.e two distinct points always have disjoint open neighborhoods,

(i) M admits a countable atlas ((U;,¢;)),.., of dimension n such that the transition maps

el
piow; ! 1 (UinUy) — iU NU;)

are smooth diffeomorphisms.



Note that R™ is obviously a smooth manifold of dimension n (it suffices to choose the identity
function as local charts). The requirement that the topology is Hausdorff in Definition avoids wild
and unwanted behaviours. Moreover, the transition maps ¢; o <pj_1 are defined between open subsets of
R™ so their smoothness is well-defined. The same comment applies for the following definition.

Definition 1.3. Let M and M be two smooth manifolds of dimension n and i with ((Ui,%))iel and
((Ui’¢i>)iel~ their respective atlases.
o A continuous scalar function f: M — R is said to be smooth if
fowiligi(Us) — R
is smooth for all i € I. The set of such functions is denoted C*°(M).

e A continuous function f: M —s M is said to be smooth if
gjofopt: s (Umffl (Uj>> — Pj (ﬁj)
is smooth for all (i,5) € I x I.

According to Definition checking the smoothness of a function f : M — M a priori requires to
check the smoothness of ¢;o fop; ! for all possible choice of i and j. However, thanks to the smoothness
of the transition maps for both atlases, f is smooth if and only if for all p € M there exists local charts
which are neighborhoods of p and f(p) and such that @; o f o ¢, !is indeed smooth. Remark that the
coordinate functions 7 defined in and associated to a local chart (U, ¢) are smooth scalar functions
on U.

1.2 Vector fields and 1-forms

1.2.1 Tangent vectors and vector fields

Now that manifolds are defined, we can define interesting objects on these structures. The first objects
we need are tangent vectors and vector fields. We assume given M a smooth manifold of dimension
n > 1.

Definition 1.4. Let p € M.

o A tangent vector X, at the point p is a map X, : C>°(M) — R which is R-linear and satisfies
the Leibniz rule

Xp(f9) = f(0)Xp(9) + 9(p) Xp(f)
for all f,g € C®(M).
o We denote T, M the set of tangent vectors at the point p and call it the tangent space to M at p.

It is obvious that T, M has the structure of a vector space over R. In the next lemma, we construct
useful bump functions (recall that the support of a function f is the closure of {p € M | f(p) # 0}).

Lemma 1.1. Let p € M and U a neighborhood of p. There exists x € C°(M) such that 0 < x <1,
x = 1 on some neighborhood of p and supp(x) C U.

Proof. See Exercise [3.2 O

Even though tangent vectors act on C>°(M) (i.e functions defined on the whole manifold), they are
local objects, as the next lemma shows.

Lemma 1.2. Let p e M and X,, € T, M.
(1) If f,g € C°(M) are equal on a neighborhood of p, then X, (f) = X,(g).



(it) If f € C®(M) is constant on a neighborhood of p, then X,(f) = 0.

Proof. For the first point of the lemma, set h = f — g, which vanishes on a neighborhood of p. Let
be a bump function around p adapted to this neighborhood (see Lemma , we have yh = 0 on M.
Since by linearity we have X,(0) = 2X,(0) and thus X,(0) = 0, we obtain X, (xh) = 0. However, the
Leibniz rule gives 0 = x(p)X,(h) + h(p)X,(x). Since x(p) = 1 and h(p) = 0 we obtain X,(h) = 0, and
thus X, (f) = X,(g) by linearity. For the second point of the lemma, the first point allows us to assume
that f is equal to some constant C' € R on the whole manifold. By linearity we have X, (f) = CXp(1)
and by the Leibniz rule X, (1) = 2X,(1) so that X,(1) = 0. O

This lemma shows that tangent vectors, acting as derivations at a point, are local objects. In
particular, it allows us to define X,(f) for f only defined on a neighborhood p, such as the coordinate
functions 7 associated to a local chart. In the next definition, we define the most important tangent
vectors.

Definition 1.5. If (U, ) is such a local chart with associated coordinate functions (xi)i:l,...,n andp € U,
we define the map Oy, : C°(M) — R by

011, (f) =0 (fo ™) ((p)), (1.2)
where the 0; on the RHS denotes the usual partial derivatives with respect to the i-th coordinate in R™.

Using the Leibniz rule for the usual partial derivatives in R™, one can check that 9,:, belongs to
T, M, but we can say much more than this.

Proposition 1.1. If (U, @) is a local chart, then (8wi|p)i:1 _,, is a basis of T,M for allp € U. Moreover,
we have '

for all X}, € T, M.

Proof. We first prove that (8,:,),_, s linearly independent. For this we compute

ami‘p(ﬁfj) =0 (;Uj o (,0_1) (@(p)) _ 3i77j(<,0(p)) _ 55

Therefore if there exists some number a; such that Y ., a;0zi|, = 0, evaluating this sum at 27 gives

aj = 0. This proves the linear independence of (8,:,)._, . Moreover, if X, € T, M then define

EEREE)

n

D=X,— Y Xp(a')0y),.

i=1
Since T, M is a vector space we have D € T, M and by definition D(z*) =0 for all i = 1,...,n. Now, let

h € C*(M). Applying Taylor’s formula in R™ to ho o~ at (p), one can show the existence of smooth
functions Al € C>°(M) such that in a neighborhood of p we have

Using the axioms of Definition [T.4] we obtain
D(h) = D(h(p)) + Z ((l‘l(p) - ﬂﬁl(p)) D (hm) + Rl (p)D (xl — xl(p))) =0,

where we have used D(z%) = 0 and the second part of Lemma This shows that D = 0 and thus that
(ax”p)i:l _ spans T, M. O



Definition 1.6. The tangent bundle of M is defined to be

TM= || T,M.
pEM

We define m : TM — M the natural map associating p to any element of TyM.

The next proposition shows that the tangent bundle is much more than simply the collection of all
tangent spaces.

Proposition 1.2. The tangent bundle TM is a smooth manifold of dimension 2n and the projection 7
ts smooth.

Proof. Given a countable atlas ((Ui,goi))i ¢ on M, we define an atlas on TM by first considering

U, = 7~ 1(U;). Thanks to Proposition for all X € U; there exist a unique (Bk)kzlw,n € R™ and a
unique p € U; such that X = >"}_, 8 Ok, (where the (Jck)k:h,,,n are associated to ¢;), and we can
define

@i(X) = (¢i(p), B,...,B").

We first note that @; (U’Z> = ¢;(U;) x R™ is an open subset of R?", and that @; is a bijection. Moreover,

we can consider the sets ¢; L(V) for V any open subset of R?" as a basis for a topology of TM, and one
can check that T'M is Hausdorff for this choice. It remains to prove that the transition maps associated

to the atlas ((U“ @i)) ; as well as 7 are smooth. If (UZ, gZai) and ( i cpj> are two local charts then
1€

957; (Uz N Uj) = (pz(U7 N UJ) X Rn, (,5]' (07 N Uj) = QDj(Ui N UJ) X Rn,
and the transition map @; o ¢; ' : i (U; NU;) x R® — ¢;(U; N U;) x R™ satisfies
B od (58 ) = (Z 66)
k=1 ‘

where the (¥)y—1 ., are associated to ¢;. If we denote by (y!,...,y") the coordinates functions
associated to ¢;, we need to relate d,» and 0y, which is done in Exercise

n
' = ;ak (J?é © 90;1) (Z)ay[\%fl(z)

Therefore we have

()

Bio@it (2,8 ... B = | D Bk (zP o) ()9 _,

k=1
(% Zﬁ’“ak zh ot Zﬁ’“ak a"opit) (2 ))

which is clearly smooth. Moreover, we have ¢; o w o @;1 (27 Bl ..., 6") = ;0 go;l(z) which is smooth.
This concludes the proof. O

Definition 1.7. A wvector field is a smooth map X : M — T M such that mo X = Idpy. We denote by
(M) the set of vector fields on M.

Concretely, a vector field is a collection of arrows at each point of the manifold and which depend
smoothly on the point (see Exercise[3.3|for a more geometric definition of tangent vectors). If X € I'(M),



then we denote X(p) by X,, and the condition 7 o X = Ida rewrites X, € T, M for all p € M.
Proposition shows in particular that in a local chart (U, ) we have

X = zn: X0,
=1

where x? are the coordinate functions associated to ¢ and X° are the smooth functions defined by
X'(p) = X,(x') and are called the components of X in the coordinate system (z%);—1, . If f € C®(M)
and X € I'(M), we define X(f) to be the function on M defined by X(f)(p) = X,(f) and we have
X (f) € C*>(M). Moreover, the Leibniz rule holds

X(fg) = fX(9) + 9X(f)- (1.3)

Therefore, there is a natural identification between I'(M) and the set of derivations of C*°(M), i.e the
R-linear maps from C*° (M) to itself satisfying the Leibniz rule. This identification allows to define the
Lie bracket [X, Y] of two vector fields by its action on smooth function

(X, Y1(f) = X(Y(f)) =Y (X(f)).

This indeed defines a vector field since it can be shown to satisfy the Leibniz rule ([L.3]). See Exercise
for important properties of the Lie bracket.

1.2.2 1-forms

Recall that each tangent space T},,M is vector space of dimension n.

Definition 1.8. We define the cotangent space Ty M to be the dual of TyM. We define the cotangent
bundle T* M to be

T"M= | | T;M.
pEM

Note that the usual property of the dual of a vector space implies that T;; M is a vector space of
dimension n. Moreover, if z° are coordinate functions associated to a local chart (U, ¢) then

dm\ip (Xp) = Xp(xi)
defines an element da:fp of Ty M. The first computation in the proof of Proposition rewrites
dI‘ip (8xj|p) = 8xj‘p(xi) = (5;

This shows that (dxi

Ip

of dimension 2n such that the natural projection 7* : T* M — M is smooth.

Definition 1.9. A 1-form is a smooth map w : M — T* M such that 7 o w = Idpq. We denote by
AY(M) the set of 1-forms on M.

As for vector fields, if w € A'(M) we denote w(p) by w, and the condition 7* o w = Id s becomes
wp € TyM. The main purpose of 1-forms is to be dual objects to vector fields, in the sense that if
w € A'(M) and X € I'(M) then w(X)(p) = w,(X,) defines an element of C*°(M). By duality, we can
also think of vector fields as acting on 1-forms by the same formula, i.e X(w) = w(X). As for vector
fields, a 1-form w can be locally expressed as

n
w = E widzx’,
i=1

where the w; = w (9,:) are the components of w in the coordinate system (xl)zzln The most important
example of a 1-form is the differential of a scalar function.



Definition 1.10. If f € C>®(M), then its differential is the 1-form locally defined by
n .
df = 0u(f)da’.
i=1
Since dz’(X) = X, one can check that the action of the differential on a vector field is given by

df(X) = X(f) (this could be a definition of df).

Remark 1.1. As their names suggest, the tangent bundle and cotangent bundle are examples of vector
bundles, which roughly speaking are a way to associate smoothly at each point of a manifold an element
of a vector space. In the case of the tangent and cotangent bundle, we associate at each point tangent
vectors and covectors.

1.3 Tensors

The most important objects in mathematical general relativity are tensors, which generalize at the same
time scalar functions, vector fields and 1-forms.

1.3.1 First definitions

There are several ways to define them, we choose the most direct one.

Definition 1.11. A tensor field of type (r,s) on a smooth manifold M is a map
T: (A'(M))" x (T(M))* — C=(M)
which is C°°(M)-multilinear. We denote by T, (M) the set of tensor fields of type (r,s).

We have already encountered a natural example of (1, 1)-tensor, since T(w, X) = w(X) can be shown
to be C°°(M)-multilinear. However, the map T(w, X,Y) = w([X,Y]) does not define a (1,2)-tensor
since T(w, fX,Y) # fT(w, X,Y)..

Let us now see how tensors generalize scalar functions, vector fields and 1-forms. By convention, a
(0,0)-tensor is the same thing as a scalar function on the manifold. Moreover, since 1-forms act on vector
fields to produce scalar functions, we can identify (0, 1)-tensors with 1-forms. Similarly, we can identify
(1,0)-tensors with vector fields since vector fields acts by duality on 1-forms. We have thus justified the
following identifications:

To (M) = C®(M), TPM) =~ A (M), and TH(M) =T (M).
Tensors can be multiplied in a particular sense.

Definition 1.12. Let T; € 7/(M) for i =1,2. We define the tensor product Ty @ T» € T2 (M) by

S

Tl ®T2 (W1, .o 7w7‘1+’r’27X17 . '7X51+82)
=T (wla-u»Wrquv"'va) x T3 (wT1+17'"awT1+T27X81+17"'aX51+52)'

Note that in general we don’t have Ty @ Ty, = To ® Ty, except when one of the tensors is a (0, 0)-tensor,
i.e a smooth function. As vector fields or 1-forms, tensors of any type are local objects, as the next lemma
shows.

Lemma 1.3. Letp € M, T € T/ (M). Consider 1-forms w,...,w, and &1, ... @, such that w;(p) =
@;(p) and vector fields X1,...,Xs and X1,..., X such that X;(p) = X;(p). We have

T(wl,...,wT,Xl,...,XS)(p) :T((Dl,...,a)r,Xl,...,Xs) (p)



Proof. By multilinearity it is enough to show that T'(wy,...,wy, X1,...,Xs)(p) = 0 when one of the w;
or one of the X; vanishes at p. Say (w1), = 0 and consider (U, ¢) a local chart around p with coordinate
functions x?, and denote by (wi); the components of w; in this coordinate system. If x is any bump
function associated to U (see Lemma , then x(w1); € C*°(M) and ydz® € A'(M) and

n
Xowy = Z x(wl)z-xdmi
i=1

holds globally on M. Therefore, C°°(M)-multilinearity implies

n

T (wiy .oy we, X1y, X)) = ZX(Wl)iT (dei,...,wr,Xl,...,Xs) )
i=1

We evaluate this equality between smooth functions at p and use x(p) = 1 and (w1);(p) = 0 (which

follows from our assumption (w), = 0) to conclude the proof. O

This lemma allows us to consider tensors as fields over the manifold, i.e as assigning to each point a
multilinear map 7, : (T;M)T x (T,M)® — R. This also allows us to consider the local expression of
a tensor, i.e the expression of T}, for all p € U where (U, ¢) is a local chart. For that, we first use the
identifications between vector fields and 1-forms and (1, 0)-tensors and (0, 1)-tensors to define the tensor
product of coordinates vector fields and coordinates 1-forms associated to (U, ¢) as below:

Oyin @+ ® Opir @A @ --- @ da?* (w1,...,wp, X1, ..., Xs)
= Opir (w1) X -+ X Ogir (wy) x dz?* (X7) x - - x dad* (X,)
= (w1)iy X - X ()i, X (X)) % x (X)7e,
where (wy,);, is the ix-th component of wy and (X,)7 is the j,-th component of X,. Using C*°(M)-
multilinearity we obtain
T (Wi Wry X1yee o Xo) =T (1) da™, oo (wr)i, da'™ (X1) 7 0 -+ (X)) O
=T (dz",...,dz", 0pir, .o Opss) (w1)iy X o0 X (wp)s, X (X1)7t x -0 x (X,)7°,

where we used the famous Einstein convention for summation, i.e we sum over repeated indexes when
one is up and one is down. Defining the components of T" in the coordinate system (2*);=1,.. ., by

T ST (A O 0)

Jids

we have obtained the local expression

T=T" "0 @ @0y ®da? @ -+ @ da’e.

As an application, let us compute the local components of 71 ® T for T; € T(M). We have

(Tl (29 TQ)ilmi‘TlJrrz = Tl & T2 (dxi17 R 7dxirl+r2 ’ azjl [ 8g;j51+52)

J1vdeqten
=T (dSC Lo, de Tl,@rjl,...,ﬁxhl) X To (dx ntto o de T1+T2,8xjsl+1,...,8$jsl+52)
_ il"'irl i7‘1+1“'i7‘1+r2
= (1), (T2)50 g

1.3.2 Contracting tensors

Contracting a tensor is a way to simplify it, i.e to go from a (r,s)-tensor to a (r — 1,s — 1)-tensor
(providing 7, s > 1). It can be interpreted as a trace, see Exercise below. Contractions of tensors of
arbitrary type are built on the contraction of (1,1)-tensors.

Lemma 1.4. There ezists a unique C*°(M)-linear map C} : T{H(M) — C°°(M) such that C} (X @w) =
w(X) for all X € T(M) and w € AY(M).



Proof. Let C{ be such a map. Let A € T}(M) and (U, ) a local chart with associated coordinate
functions (z%);=1, . Since C} is C°°(M)-linear we can use the local expression of A to compute the
function C}(A) on U. Since this local expression is A = A%,: ® dz/ and again because of the C*°(M)-
linearity of C{ we thus have on U:

CH(A) = ALC] (0, ® da?) = Alda? (0,:) = ALs] = AL,

where we have used C}(X ® w) = w(X). This shows the uniqueness of C}, if it exists. For the
existence, the above computation actually dictates what C{(A) should be, but we need to show that if
two coordinate systems (z%);—1,, and (yi)¢:1,_.,n overlap, then the two definitions of C}(A) match.
For this we use the transformation rules for the coordinate vector fields and 1-forms from Exercise [L6}

A(dz",0,:) = A ((8k (:L'z o @/}71) o 1/;) dy*, (6',; (yz o <p71) o <p) ayz)
= (O (2" 0u™) o)) (9 (y" 0 ™") 0 p) A(dy*,0yr)

where (z');=1,.. » and (y')i=1,..n are associated to ¢ and 9 respectively. Now if we define f = @ oy~!
and z = 1(p) we have

Ok (209 ") o)) (8 (¥ 0 p™") 00) (p) = Ok (' o f) (2)0i (w0 f71) (f(2)),

which is the (¢,k) coefficient of the Jacobian matrix of f~! o f at z, that is §5. Therefore we have
A(dat, 0,:) = 0L A (dy*,0,¢) = A(dy’,d,:). Therefore C}(A) is a well-defined function on M and its
smoothness can be read on its local expression. O

An outcome of the proof of the previous lemma is the effect of the (1,1) contraction C] in local
coordinates. If A € 7;'(M) has local components A% = A (da?,d,;) then C{(A) is the smooth function
locally given by A¢ (with Einstein’s summation convention).

The extension to a tensor of arbitrary type is straightforward. Let A € 7 (M) with r,s > 1 and
choose some 1 < a <r and 1 < b <s. For wy,...,w,_1 some fixed 1-forms and X1,...X;_1 some fixed
vector fields, define Af[wi,...,wr—1,X1,... Xs_1] by

Ag[wh...,wT,l,Xl,...Xs,l](w,X) :A(wl,...,wa,l,w,wa,...,wT,Xl,...,Xb,l,X,Xm...,XS).
Since A¢[wr, ..., wr_1, X1, ... Xs_1] is C°°(M)-multilinear, it defines a (1, 1)-tensor and we define
C’{f(A)(wl, RN 7(,c}rfl,)(l, .. .Xsfl) == Cll (fll’f[wl, ce 7(,()Tfl,)(l,. . .XS,]_]) .

Since C¢(A) is C*(M)-multilinear, we have defined a C*(M)-linear map Cf : 7. (M) — T/ H(M),
which is the contraction over the indices a and b. As for the (1,1) contraction, we can see the effect of
the (a,b) contraction in local components:

(CE(A) 7t = Ca(A) (da™, ..., daiv=1, Oy ... Doy )

JiJs—1
=0} (Ag [da™, ... dz" =", Opir, ..., asz—1]>
= Ag [da™, ..., da" ", 0piny e Opier | (A2, Opn)
= A(da™, ... dzle da¥, date, . da ™ Oy oo Opiy 1y Oy Oias o Opie 1)

_ fiia—tkiarie_
= Gk da1

We thus see that the (a,b) contraction translates in coordinates to a sum over the a-th up index and the
b-th low index. The most important property of contractions is that they don’t depend on the coordinate
system, meaning that if A € T;*(M) and if (z*);=1,..» and (y')i=1,..n are too overlapping coordinate
systems then A(dz®, d,+) = A(dy*,d,). Note that this would be false if we were to sum over two vector
fields or two 1-forms: we need one index up and one index down to contract over them.



1.3.3 Derivation of tensors

For now, we know how to differentiate smooth functions with a vector field. It is in fact possible to
differentiate any kind of tensors, with the notion of tensor derivation.

Definition 1.13. A tensor derivation is a R-linear map
D: | M) — || T
7,520 7,5>0
T — DT

such that

e it preserves the type, i.e D (T (M)) C T (M),

e it satisfies the Leibniz rule D(A® B) = DA® B+ A® DB,

o it commutes with any contraction, i.e D(C(A)) = C(DA).

Since a tensor derivation D preserves the type and since the tensor product for two (0, 0)-tensors
(i.e smooth functions) is just the multiplication of smooth functions, the above Leibniz rule implies
the standard Leibniz rule for functions D(fg) = D(f)g + fD(g). Since derivations on functions are
vector fields, there must exists X € I'(M) such that D(f) = X(f) for all f € C>°(M). The following
proposition gives the expression of DT in terms of T.

Proposition 1.3. Let D be a tensor derivation and let T € T (M). For all w; € A*(M) and X; € T(M)
we have

(DT)(wl,...,wr,Xl,...,Xs) :D(T(wl,...,wT,Xl,...,XS))

r
- § T(wh'"awk’—hpwk?wk-‘rla"'awT7X1a"'7XS)
k=1

= T(wi,. . wp X1, X1, DX, Xpr, -, X)
=1

Proof. In local coordinates, we have
A(wlv sy Wry Xla R XS) = A‘;llzz (wl)il (wr)ir(Xl)jl e (Xs)]s
so that there exists C' a product of r + s contractions such that
Alwr, oy X1y, X)) =CAQw1 @ Quw, @ X1 @+ @ Xy).

Therefore, using the commutation with contraction (and thus with product of contractions) and the
Leibniz rule we get

D(A(wl,...,wT,Xh...,XS))
=CPAQw ® Quw,®X1® - ®Xy))
=CPARWI ®  Qu, X1 ® @ Xy)

+) CARwW @ Qw1 ®Dwp Qw1 ® - Buwr @ X1 ® -+ ® X,)
k=1

+) CARw @ Ruw X1 @@ X1 DX, ® Xp1 ® -+ ® X,)
/=1
= (DA)(wla-"awT7X1;-"aXS)

r
+ E A(wla---7wk—1aDwkawk+l7"'7wTaX17"'7XS)
k=1

+ZA(WIM"7WT‘7X1>‘"7X5717DXE7XE+17'"uXS)a
(=1

which concludes the proof, after isolating the first term. O

10



This proposition shows that in order to know the derivative of any tensor, it is sufficient to know
how to differentiate smooth functions, 1-forms and vector fields. Actually, we don’t need to know how
to differentiate 1-forms, as next lemma shows.

Lemma 1.5. Let X € (M) and D} : T(M) — T'(M) a map satisfying
Do(fY) = X(f)Y + fDy(Y)

for all f € C®°(M) andY € T(M). There exists a unique tensor derivation D such that

_ _ Pl
Dy =X Dipyipy = Db (1.4)
Proof. 1If D exists, then for w € A1(M) and Y € I'(M) we have
X(w(Y)) =D(CY @w)
=C (DY ®@w))
=C(DY ®w+Y ®Dw)

w(DY') + Dw(Y),

where we used the commutation with contractions and the Leibniz rule. Therefore for all w € A'(M),
the 1-form Dw is given by

(Pw)(Y) = X (w(Y)) — w (DgY) ,

for all Y € T'(M). Therefore the action on 7°(M) is uniquely defined, and thus thanks to Proposition
[I:3] the action on all tensors is uniquely defined. This proves uniqueness. For the existence, define
DY = X (viewed as a derivation of smooth functions), DY : A1(M) — AY(M) by the above formula
(DYw)(Y) = DY(w(Y)) —w (D§Y). If now r 4+ s > 2 and A € T (M) then define D; A by the formula

(DrA) (wiy ..oy wry X1y, Xo) = DY (A(wr, -y Wy X1y, X))

r
E 0
- A(w17"'5wk—17D1wkawk+17'"7wTaX17"'7Xs)
k=1
s
1
- E A (wl,...,w,«,Xl,...,Xg_l,'Dng,Xg_,_l,...,Xs) .
(=1

By using the Leibniz rule for D§ and D} one can show that Dw is C°°(M) and thus DY that is well-
defined. One can also show that DY satisfies also the Leibniz rule D{(fw) = fD%w + X(f)w which
implies that DL A is C°°(M)-multilinear and thus that D7 : T/ (M) — T (M) is well-defined. We
now define a candidate D : | ], .~ 7S (M) — L, ;50 7 (M) by setting Dy, = Di. The map D
obviously preserves the type and satisfies so it remains to show that D satisfies the Leibniz rule
and commutes with contraction. This is left as an exercise for the reader. O

This lemma shows that a tensor derivation is entirely characterized by a vector field, i.e a way to
differentiate smooth functions, and a way to differentiate vector fields (more on this in Exercise [1.9)). In
these notes, we will encounter two ways of differentiating vector fields (and thus two tensor derivations),
see Exercise [I.§| for the first one and Chapter [2| for the second one. We highlight an important formula
previously obtained: the derivative of a 1-form is given by

Dw(X) = D(w(X)) — w(DX), (1.5)

where on the RHS, the derivative of a function and the derivative of a vector field appear.

1.4 Exercises

Exercise 1.1. Consider the sphere

SQ — {( 1,3:2,303) c RS ’ (331)2 + (332)2 + (333)2 — 1} )
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1. Using the siz open subsets of S?
U; = {(xl,xz,x‘B) es? } ) > O}, V; = {(:L'l,xQ,:cS) es? | ¥ < 0},
for j =1,2,3 and the maps from S? to R? defined by
p1(x) = (22, a%), pala) = (2,2, p3(x) = (a',a2),
show that S? is a 2-dimensional smooth manifold.

2. Same question with the two open subsets Uy = S2\ {(0,0,1)} and Uy = S?\ {(0,0,—1)} and the
maps

- .Tl 1‘2 - 331 .TQ
@ == i) P = T 1ra)

3. Generalize to S™.
Exercise 1.2. Consider f : R — R defined by f(t) = e7 for |t| <1 and f(t) =0 for |t| > 1.

1. Show that the convolution
1
htzi/ft—yl_ y)dy
(t) fRflR( 12,2 (y)

defines a smooth function satisfying 0 < h <1, supp(h) C [-3,3] and hy_, , = 1.

2. Prove Lemma [l

Exercise 1.3. Let M be a smooth manifold, p € M and define
CoM={c € C*((—1,1),M) | ¢(0) = p}.

Given a local chart (U, ) around p, two curves c1,ca € CpyM are said to be equivalent if (¢ o 1) (0) =
(¢ 0c2)'(0).

1. Show that this equivalence relation ~ is well-defined and does not depend on the local chart.

2. Assume that p(p) = 0 and define a vector space structure on Tp/\/l = CpM/ ~.

3. Define an isomorphism between T,M and Ty M.
Exercise 1.4. Let X,Y,Z € (M), a,b € R.

1. Prove that

(aX +Y, 7] = alX, 7] + ¥, 2],
(X, Y] = —[Y, X],
(XY Z]| + [V, [Z, X]| + [Z,[X, Y]] = 0.

The last property above is called the Jacobi identity.
2. If f,g € C*°(M), prove that
[fX,9Y] = fglX, Y]+ fX(9)Y — gY (f)X.
3. Compute the local components of [X,Y].
Exercise 1.5. Let M be a smooth manifold. For w € A*(M), we define dw by
dw : (X,Y) € ([(M))” — X (w(Y)) = Y (w(X)) = w([X, Y]).

1. For all w € AY (M), show that dw is a (0,2)-tensor (called the exterior derivative of w).
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2. Show that d : (w, X,Y) € A (M) x (T(M))* — dw(X,Y) does not define a (1,2)-tensor.
3. Compute ddf.

Exercise 1.6. Let M be a smooth manifold and (U, @) and (V,4) two local charts such that UNV # 0,
and denote by (m’)lzln and (yi)i:17,,,)n their coordinates functions.

1. Ezpress Oyi in terms of the 0, ’s and dz? in terms of the dy’ ’s.

2. Let T € TI (M) be a tensor. Express its components in the coordinate system (xl)zzln with
respect to its components in the coordinate system (yl)z:1n

Exercise 1.7. Let A € T,{(M) and p € M. Define a linear operator A, : T, M — TyM and show that
Ci(A)(p) = trd,.

Exercise 1.8. Let X € T'(M). We define the following operations on smooth functions and vector fields:
Lxf=X(f), LxY:=[XY]
1. Show that this defines a unique tensor derivation Lx (called the Lie derivative with respect to X ).
2. Show that Loxyy = alx + Ly and Lix y) = [Lx, Ly].
3. For f € C®(M), show that dLx f = Lxdf (where d is the differential).
4. For w € AY(M), show that dLxw = Lxdw (where d : TL(M) — T (M) is defined in Ezercise

3.

Exercise 1.9. Let ©(M) be the vector space of tensor derivations on a smooth manifold M. For
B € TH(M), we define (Dp)§ : T(M) — T'(M) by (Dp)§(X)(w) = B(w, X).

1. Show that for every B € T{"(M) there exists a unique D € D(M) such that Dpy,,,, = (DB)g-
2. Show that

OM)={Lx | X eIM)}&{Dp | BE T} (M)},

where the Lie derivative Lx 1is defined in Ezercise[1.8
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Chapter 2

Pseudo-Riemannian Geometry

The real start of general relativity is the definition of a metric tensor, which is by far the most important
type of tensor of these lectures since all the other ones (such as the Riemann tensor) will be defined with
respect to a given metric tensor.

2.1 The metric tensor

We recall some facts about bilinear algebra. If V is a n-dimensional real vector space, then a bilinear
map f:V xV — R is said to be symmetric if f(v,w) = f(w,v), non-degenerate if f(v,w) = 0 for all
w implies v = 0. Being non-degenerate is equivalent to the invertibility of any matrix representing f,
ie (f(vi,v5))1<ij<n for (v;)i=1, ., some basis of V. If f is symmetric and non-degenerate the Gram-
Schmidt algorithm ensures the existence of an orthonormal basis (e;)i=1,..n, of V for f, i.e a basis
satisfying f(e;,e;) = 0if i # j and f(e;,e;) € {—1,+1}. The number of e; such that f(e;,e;) = —1 can
be shown to be independent of the orthonormal basis (this is called Sylvester’s law). Therefore, we can
associate unambiguously to f a sequence (—,...,—,+,...,+) of length n representing how many basis
vectors satisfy f(e;,e;) = —1 or f(e;,e;) = 1, this is the signature of f.

Definition 2.1. Let M be a smooth manifold.

o A pseudo-Riemannian metric tensor g is a (0, 2)-tensor such that for allp € M, g, is a symmetric
non-degenerate bilinear form on T, M with signature independent of p.

e A pseudo-Riemannian manifold (M, g) is a smooth manifold endowed with a pseudo-Riemannian
metric.

Recall that thanks to the locality of tensors (proved in Lemma [1.3), it is meaningful to speak about
gp as a bilinear form on 7, M. While most of the forthcoming definitions are valid for any signature,
only two cases are truly interesting.

Definition 2.2. Let (M, g) be a pseudo-Riemannian manifold.
o [f the signature of g is (+,...,4), then (M, g) is called a Riemannian manifold.
o If the signature of g is (—,+,...,+), then (M, g) is called a Lorentzian manifold.

Note that in the Riemannian case, the metric tensor defines a scalar product g, on each T, M, since in
addition to being symmetric and non-degenerate, g, is also positive, in the sense that g, (X, X,) > 0 for
all X, € T, M and g,(X,, X,) = 0 implies X, = 0. In the Lorentzian case this is not the case anymore,
even though we still think of the metric as measuring some kind of physical distance. In particular,
g,(Xp, X,p) can have an arbitrary sign and even vanish.

Definition 2.3. Let (M, g) be a Lorentzian metric, p € M and X, € T,M.
o Ifg,(X,,X,) >0, X, is a spacelike tangent vector.

o Ifg,(X,, Xp) <0, X, is a timelike tangent vector.
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o Ifg,(X,,X,) =0, X, is a null tangent vector.
This can be extended to vector fields X € T'(M).

The most important example of Riemannian manifold is simply the Euclidean space (R", geyc1) where
Eeuel 18 the so-called Euclidean metric

Beucl = dxl ® d$1 4+ 4+ dz" ® dl’na

where (:cl, ...,2z™) are the standard Euclidean coordinates on R™ (note that this formula defines gy
on the whole space since this is a global coordinate system). The most important example of Lorentzian
manifold is the Minkowski spacetime (R'™™ m) where m is the so-called Minkowski metric

m=—dz’ @ d2® + dz!? @ dz' + - -+ + dz" ® dz”,

where (2%, 2,...,2™) are the standard Euclidean coordinates on R**". The Minkowski spacetime is the

spacetime of special relativity, and the whole purpose of studying more general Lorentzian manifolds is
to get general relativity. If X = X9y + X0, + --- X"0,, is a vector field in Minkowski spacetime then
m(X, X) = — (X°)% + (X1)* 4. (X"

Remark 2.1. From now on, we use greek letters instead of latin ones to denote coordinates on a manifold.

This 1s consistent with the physical interpretation of Lorentzian geometry, where time plays a special role:
20 is the time coordinate and x' are the spatial coordinates, and greek letters range from 0 to n.

The components of the metric tensor g in a coordinate local chart (z%)q=o,... n are defined, as usual
for tensors, by gap = &(9yo,0ys). The defining properties of a metric tensor implies that the matrix
(8ap)0<a,p<n is symmetric and invertible at each point of the manifold. We denote by g the compo-
nents of its inverse, and thanks to the formula for the inverse of a matrix, we have g®* € C>(M). The
fact that (8a8)o<a,s<n and (go‘ﬁ)oga,ggn are the inverse of one another is of course equivalent to the
fact that their product is the identity matrix, i.e that

g*’gs, = 63,
where we crucially used Einstein’s summation convention.
Lemma 2.1. Let (M, g) be a pseudo-Riemannian manifold. There exists a unique (2,0)-tensor, denoted

g~ and called the inverse metric tensor, satisfying C1 (7' @ g) = Id where Id(w, X) = w(X) is the
identity (1,1)-tensor. In a local chart we have (g‘l)aﬁ = g°b.

Proof. If such a g~! exists, then the requirement C} (g_l ® g) = Id reads in coordinates (g_l)aﬁ sy =

45 so that by uniqueness of the inverse of a matrix we must have (g_l)aB = g®P. For the existence, we
would like to define a tensor g~! be setting its component in a local chart to be g®?. As this depends on
the chart, we need to show that these components transform as a (2,0)-tensor (see Exercise . This
is left as an exercise for the reader (use the transformation rule satisfied by the (0, 2)-tensor g). O

An important feature of g and g~! is that they can be used to change the type of a tensor. We start

starting with the easy case of (1,0) and (0, 1)-tensors, i.e vector fields and 1-forms.
Lemma 2.2. Let X € (M) and w € A*(M).

o The map Y € (M) — g(X,Y) defines a 1-form denoted X", its components in a local chart are
(X")a = gapX?.

e The map & € AY (M) — g~ Y (w, &) defines a vector field denoted w?, its components in a local
chart are (w#)* = g*Pwg.

Moreover, the maps b : X € T(M) — X* € A'(M) and # : w € A'(M) — w# € T(M) are
C(M)-linear isomorphisms satisfying

bO#ZIdAl(M), #Ob:IdF(M). (2.1)
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Proof. The map X’ defined by X*(Y) = g(X,Y) is C>(M)-linear and thus defines a (0, 1)-tensor, that
is a 1-form. The map w# defined by w# (¢) = g~ (w, £) is C°°(M)-linear and thus defines a (1, 0)-tensor,
that is a vector field. Moreover, using the local expressions X = X7 Op and w = w,@dxﬁ we find

(Xb)a = Xb(aa) = g(X, aa) = g(aﬁa 804)X/B = gaBX'Bv
(W)™ = w#(dz®) = g~ (w,dz®) = g~} (d2?, dz*)ws = g*Pwp.
e -linearity of the maps b an 1s obvious, and the properties (2.1) can thus be checked in
The C*°(M)-li i f th b and # is obvi d th ies ([2.1] hus be checked i
local coordinates

b o #(w)a = Bap(w¥)? = gapg™w,y = §lw, = wa,
#Hob(X)* = gaﬂ(Xb)B - gaﬁgﬁ’YX’Y - 5$X7 - X,

where we used g,zg”7 = 6 twice. O

As we can see on the components expression (X”), = gosX? and (w#)® = g®Pwg, the metric is used
to lower indices while the inverse metric is used to raise indices, which explains the use of the musical
notations b and #. Moreover, since the musical isomorphisms are isomorphisms, X and X’ (or w and
w) contain the exact same information, and are thus viewed as different manifestation of a single object:
vector fields and 1-form are basically the same thing, and we go from one to the other by using either g
or g~ L.

2.2 The Levi-Civita connection

It will be important to be able to differentiate a vector field with respect to another one. However the
standard point of view of differentiation, i.e considering the rate of change between two points, does not
work here since X, and X, (for X € I'(M) and p # ¢) live in different vector spaces so that X, — X, is
not defined. We rely instead on the notion of connection.

Definition 2.4. Let M a smooth manifold. A connection D is a map
D : (T(M))* — T(M)
(X,Y) — DxY

which is C*°(M)-linear with respect to its first argument, R-linear with respect to its second argument
and satisfies the following Leibniz rule

Dx(fY) = X(f)Y + fDxY,
for X, Y €e T(M) and f € C®°(M).

Thanks to the C'°°(M)-linearity with respect to its first argument, the value of DxY at p depends
only on the value of X at p, whereas it depends on the value of Y on a neighborhood of Y. Moreover,
the absence of C*°(M)-linearity with respect to the second argument shows that a connection does not
define a (1, 2)-tensor.

On a given smooth manifold there are a lot of possible connections, since locally we must have
DxY = (X(Y*) + X'YITE) 0,

for some smooth functions I‘fj satisfying Dy , 0,5 = Ffjamk. Exercise 77 shows how one can always define
a connection. Crucially, the existence of a metric tensor allows us to define a canonical connection, called
the Levi-Civita connection.

Theorem 2.1. Let (M, g) be a pseudo-Riemannian manifold. There exists a unique connection D such
that
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(i) D is torsion free, i.e

[X,Y]=DxY — Dy X,

(ii) D is compatible with g, i.e

X (g(Y,Z2)) =g(DxY,Z)+g(Y,DxZ).

Moreover, it is characterized by the Koszul formula

286(DyZ, X) =Y (g(2, X))+ Z(g(V, X)) - X (g(V,2)) (2.2)
_gO/v [Z7X]) +g(Zv [X’Y]) +g(Xv [Y7Z])

Proof. Since gy, is non-degenerate at each p, the formula (2.2)) defines a unique vector field Dy Z € T'(M).
Let us show that this indeed define a connection D which is torsion free and compatible with the metric:

e D is a connection. The R-linearity with respect to the second argument is obvious. For the Leibniz
rule we compute

26(Dy(f2) =Y (f)Z - Dy 2, X) =Y (fg(Z, X))+ [Z (g (Y, X)) - X (fg (¥, 2))
—g(V,[fZ2,X]) + [ (Z,[X,Y]) + g (X, [V, £ Z])
—2Y(f)g(Z,X)
— /Y (8(2,X)) - fZ2(g(YV, X))+ /X (g(Y,2))

+/8(Y,[2,X]) - fg (24, [X,Y]) - fe (X, [V, Z])
=-Y(g(Z,X)-X(feg (¥, Z)

-V, [fZ X)) +g(X,[Y, fZ])

+ /e (Y, [Z,X]) - fg (X, [Y, Z])

:07

where we used the Leibniz rule for vector fields and the second question of Exercise 1.4 The
C°(M)-linearity with respect to the first argument is proved similarily:

2¢(DyyZ — fDyZ,X) =2g(DyyZ, X) — 2fg(Dy Z, X)

=Y (g(Z,X)+Z(g(fY,X)) - X (g(fY,2))
-g(fY.[Z, X)) +g(Z,[X, fY]) + (X, [fY, Z])
~ Y (g(Z, X)) - fZ(g(Y, X))+ fX(g(Y,2))
+fe(Y,[Z2,X]) - fg(Z,[X,Y]) - fg (X, [Y, Z])

=Z(feg(Y,X)-X(f)g (¥, 2)
+f8(Z, X, Y]) + X(f)g(Z,Y) + fg (X, [Y.Z]) - Z(f)g (X,Y)
- fe(Z,[X,Y]) - fg(X,[Y, Z])

=0.

e D is torsion free. We compute

22(DyZ —DzY - [V, 2], X) =Y (g(Z, X)) + Z (g (Y, X)) — X (g (Y, 2))
-V [Z, X)) +(Z,[X,Y]) +8(X, [V, Z])
-Z (Y, X)) -Y (g(2,X))+ X (g(V,2))
+g( 4 [V, X)) -V, [X, Z]) —e(X,[2,Y])

—2g([Y, 2], X)
=0,

where we used the symmetry of g and the antisymmetry of the Lie bracket (see Exercise .
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e D is compatible with g. We compute

2(g(DxY,2)+g(Dx2,Y)) =X (g(Y,2)) +

(8(%,X)) - Z(g (Y, X))
—gs(X, [V, Z]) +g(¥

Y
+eg(V,[2,X]) +e(Z[X,Y])
_|_
+

)
+X(g( Z)+Z(g(Y, X)) -Y (g(% X))
g(X,[2,Y]) +g (2, [V, X]) +g(V,[X, Z])
—2X( ¥, 2)) —g (X, [\, 2] + [2,Y])
g(V,[Z2, X]+ X, Z]) + g (2, [X, Y] + [V, X])

=2X (g(Y,2)),
where we used the antisymmetry of the Lie bracket.

We have proved the existence of a torsion free connection which is compatible with g. The uniqueness
follows from the fact if a connection is compatible with g then

Y(g(2,X)+Z(g(Y,X))-X(g(Y,2)) —g(V,[Z,X]) +g(Z,[X,Y]) + 8 (X, [V, Z])
=g, [Z,X]-DzX +DxZ)+g(Z,[X, Y]+ DyX —DxY)+g(X,[Y,Z] + DyZ +DzY).
If morever D is assumed to be torsion free then we indeed obtain the formula (2.2) which completely
characterizes Dy Z. O
From now on we denote the coordinate vector fields 0.« by 0.
Lemma 2.3. If (2%)a=0,...n s a coordinate system we define the Christoffel symbols to be the smooth

scalar functions I'};, such that

Dy, 0, =T1%,,04.

i nv
They are given by

o 1 (e}
Tp = 58" (Ou8us + Ovgus — OpBu) -

In particular we have I'y;, =T7 .
Proof. We start with the Koszul formula applied with 8,,, 9, and 0,:
2g(Dy, 0y, 04) = 0, (8 (9y, 0a)) + 0y (8 (9, 0a)) — Do (& (O 0))
— g (8;u [0v,0a]) + & (9y, [Oa, al—t]) + & (0> [auv av])

= a/t (g (aua aa)) + 8u (g (a/u aoz)) - 804 (g (a/u au)) )
where we used the fact that the commutator of two coordinate vector fields vanishes. Using the definition
of the Christoffel symbols and the metric components we thus get

QF,gygoc,B = augva + &/gua - 8ag;w-

We multiply each of these equations by g*” and sum over « and obtain

211ﬁugo¢,6’ga'Y = ga'y (augua + augua - aozguu) .
Using gapg8*" = (5”5Y concludes the proof. O

In the case of Minkowski spacetime (R3*1, m), the Christoffel symbols identically vanish in Euclidean
coordinates (same for the Euclidean space). Therefore, in Euclidean coordinates Dy, 0g = 0 and the
Levi-Civita connection reduces to the standard partial derivatives: if Y = Y Op then DY = (&XYE ) 0s.
Despite the notation, Christoffel symbols are not the component of a tensor! See Exercise for an
example where they vanish in a coordinate system and don’t vanish in another one. By using the Leibniz
rule satisfied by every connection and Lemma we can define a tensor derivation with the Levi-Civita
connection.

Lemma 2.4. Let X € TI'(M). There exists a unique tensor derivation, still denoted Dx, such that
Dx(f) = X(f) and Dx(Y) =DxY for all f € C®°(M) and Y € T(M).

This tensor derivation has very nice properties (compared for instance with the Lie derivative), see
Exercise 2.4
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2.3 Curvature

As Exercise [1.8| shows, if the Lie bracket [X, Y] vanishes then the commutator [£x, Ly] vanishes. How-
ever, if we consider the Levi-Civita connection instead of the Lie derivative we obtain a very important
object ultimately linked to the geometric idea of curvature.

2.3.1 The Riemann curvature tensor and its properties

Definition 2.5. Let (M, g) be a pseudo-Riemannian manifold.
e We define the Riemann endomorphism R : T(M)3 — T'(M) by

R(X,Y)Z =DxDyZ — DyDxZ — D(x y| Z. (2.3)

e We define the Riemann tensor Rm : T'(M)* — C°°(M) by

m(W, Z,X,Y) = g(W,R(X,Y)Z).

Lemma 2.5. The Riemann tensor is a (0,4)-tensor.

Proof. Since the C*°(M)-linearity of the Riemann tensor with respect to the first argument is obvious,
we only need to prove the C'°°(M)-multilinearity of the Riemann endomorphism. If f € C*®°(M) we
have

R(X,Y)fZ =DxDy(fZ) - DyDx(fZ) — Dixy(f2)
=Dx (Y(f)Z+ fDyZ) =Dy (X(f)Z + fDx2) - [X,Y](f)Z + fDix yv1Z
XY(f)Z+Y(f)DxZ+ X(f)DyZ + fDxDyZ
Y(X(f)Z - X(f)DyZ -Y(f)DxZ — fDyDxZ — [X,Y|(f)Z + fDix yv1Z
:fR(X,Y)Z,

where we used the Leibniz rule and the definition of the Lie bracket. Moreover

R(fX,Y)Z = D;xDyZ - DyDyxZ —Dxv1Z
= fDxDyZ — Dy (fDxZ) — Dyix,y)-v(5)xZ
= fDxDyZ - Y(f)DxZ — fDyDxZ — fDixy1Z +Y(f)DxZ
= fR(X’ Y)Z,

where we used [fX,Y] = f[X,Y] — Y(f)X. The last property R(X, fY)Z = fR(X,Y)Z follows from
the antisymmetry of the map R(-,-)Z. O

The next proposition gathers algebraic and differential properties of the Riemann tensor.
Proposition 2.1. The Riemann tensor satisfies the following properties:

(i) Antisymmetry and symmetry:

Rm(W, Z,X,Y) = —Rm(W, Z,Y, X), (2.4)
m(W,Z, X,Y) = ~Rm(Z,W, X,Y), (2.5)
Rm(W, Z, X,Y) = Rm(X,Y, W, Z). (2.6)
(i) First Bianchi identity:
m(W, X,Y, Z) + Rm(W,Y, Z, X) + Rm(W, Z, X,Y) = 0, (2.7)
(i4i) Second Bianchi identity:
DxRm(V,W,Y, Z) + DyRm(V, W, Z, X) + D,Rm(V, W, X,Y) = 0. (2.8)
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Proof. The antisymmetry property directly follows from . For 7 we use three times the
compatibility of D with g:
Rm(W,Z,X,Y) = g(DxDyZ,W) — g(DyDxZ,W) — g(Dix,y)Z, W)
=X(g(DyZ,W)) -Y(g(DxZ,W)) +g(DxZ, DyW) — g(DxW,DyZ)
— [X,Y](g(Z,W)) + g(Dx W, 2)
=—X(g(Z,DyW)) +Y(g(Z, DxW)) + g(DxZ,DyW) — g(DxW,Dy Z)
+g(Dx W, Z)
= —g(DxZ,DyW) —g(Z,DxDyW) +g(DyZ,DxW) + g(Z,DyDxW)
+g(DxZ,DyW) —g(DxW,Dy Z) + g(Dix,y1W, Z)
=-Rm(Z,W,X|Y).
For the first Bianchi identity , we use twice the torsion free property of D:
RX,Y)Z+R(Z,X)Y +R(Y,Z)X
=Dp,2zX +[X,DyZ] —Dp,zY - [Y,DxZ] —Dp,vZ +Dp, xZ
+Dp,vZ+[Z,DxY]-Dp,yX —[X,DzY] - Dp,xY +Dp,zY
+Dp,xY +[Y,DzX] -Dp,xZ — [Z,DyX] - Dp,zX +Dp,yv X
=[X,DyZ-DzY]|+[Y,DzX —DxZ]+ [Z,DxY — Dy X]
=X, V. 2]+ [V, [Z2, X]] + [Z,[X, Y]]
=0,

where we have used the Jacobi identity for the Lie bracket (see Exercise|l.4]). For (2.6), we first deduce
from (2.7) the four identities

Rm(W,Y, X, Z) + Rm(W, X, Z,Y) + Rm(W, Z,Y, X) = 0,
Rm(X,W,Z,Y) +Rm(X, Z,Y,W) + Rm(X,Y,W, Z) = 0,
Rm(Z,X,Y,W)+Rm(Z,Y,W,X) + Rm(Z,W,X,Y) =0,
Rm(Y, Z, W, X) + Rm(Y,W, X, Z) + Rm(Y, X, Z, W) = 0.

Adding these four identities and regrouping terms together with (2.4]) and (2.5)) leads to
0=2(Rm(ZW,X,Y) - Rm(X,Y,Z,W)),

which concludes the proof of . One way to prove is to compute by brute force, but there is a
more clever one which benefits from the tensorial nature of . Indeed, thanks to this tensorial nature,
it is enough to prove in a particular local coordinates system. We consider p € M and consider
local normal coordinates (z*),, which are such that the Christoffel symbols vanish in this coordinates
system (such coordinates can be defined with the so-called exponential map). In particular, this implies
that (Doﬁg)p = 0 in this coordinates system. Using this and the definition of a tensor derivation we
obtain at p:

D.Rm (93,9, 0, 0,) = 0o (RM(Ip, 0,0, 0,)) = &(95, DaR (9, 0,)05),
where we also the used the compatibility with the metric. We continue using [0, 9,] = 0:
D.Rm(ds,0,,0,,0,) = g(93,D.,D,D,0, — D,D,D,0,).
This gives:

D.Rm(dg,0,,0,,d,) + D,Rm(dz,0,,8,,0.) + D,Rm(9,0,,0a,0,)

— g(9s,(D,D,D, - D,D,D, +D,D,D, - D,D,D, +D,D,D, —D,D,D,)d,)
— g(93,((D,D, — D,D,)D, + (D,D, — D,D,)D, + (D,D, — D,D,)D,)d,)

— R(93,D,0,,04,0,) + R(93,D005,0,,0,) + R(93,D,,05,0,,0,)

— 0’

where we again used [0, 0,] = 0 to reconstruct the Riemann tensor. O
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2.3.2 The Einstein vacuum equations

Because of its type, the Riemann tensor Rm is too complicated and we would like to simplify it by
contracting it. However we have only learned how to contract tensors acting on at least one 1-form and
one vector field, which strictly speaking is not the case of the Riemann tensor. Nevertheless, with the
help of the inverse metric we can transform one vector field into a 1-form and then contract. To be very
rigorous, we define the following musical map # : T2(M) — T.1 ; (M) defined by

T#(W,Xl, . ,Xsfl) = T(w#, )(17 N ,Xsfl).
We can now define the metric contraction Cy, : T2(M) — TL 5(M) (for 1 < a < s) by
C1a(T) = Cqy (T%).
In coordinates this gives

74
Cra(T)jyjoo = 8 Thjyjusliar-ju_s-

Definition 2.6. Let (M,g) be a pseudo-Riemannian manifold. We define the Ricci tensor and the
scalar curvature by

Ric = C13(Rm) and R = Ci2(Ric).

The Ricci tensor is thus a (0,2)-tensor. In a local chart we have Ric,s = g'"Rmyq,3. The
symmetries of the Riemann tensor gathered in Proposition [2.1]imply that the metric contraction defining
the Ricci tensor is the only interesting one since Ci2(Rm) = 0 and C14(Rm) = —Cj3(Rm). They also
imply that the Ricci tensor is a symmetric tensor since

Ric.s — Ricga = g""Rmy a8 — g""Rm, g0 = g""Rmyq — g""Rmyq,5 =0,

where we used (2.6]) and the symmetry of g. The scalar curvature is a (0, 0)-tensor, i.e a smooth function,
locally given by R = g®f Ric,g.

Now that we have the Ricci tensor and the scalar curvature, we can finally define the Einstein
equations of general relativity: if (M, g) is a Lorentzian manifold, the Einstein equations for g are

1
Ric — iRg =T, (2.9)

where T is a (0, 2)-tensor called the stress energy tensor. It has to be divergence free and it describes
the energy and matter in the spacetime. Several comments are in order:

e The fact that the RHS of is divergence free necessarily implies that the LHS is also divergence
free (this will be proved below). The stress energy tensor T usually depends on additional fields
with physical meaning, such as a scalar field ¢, an electromagnetic field F),,, a fluid v*, a density of
particles f(z,p)... The divergence free condition then recasts the wave equation for ¢, the Maxwell
equation for F', the Euler equation for u or the Vlasov equation for f. As every divergence free
condition, these equations are thus naturally interpreted as conservation laws for various physical
quantities.

e The LHS of , usually called the Einstein tensor, is a divergence free symmetric (0, 2)-tensor
which depends only on zeroth, first and second order derivatives of g and which is linear in the
second order derivatives (see next section for a proof of that). A theorem of Lovelock proves that
in dimension 3 + 1, the only such tensors are Ric — %Rg and g itself. This explains why the only
modification of the equations that preserves the above mentioned properties is the addition of
a term of the form Ag to the LHS, where A € R is called the cosmological constant. Another way
of obtaining the Einstein tensor is by minimizing the so-called Einstein-Hilbert action | v RdVolg.

e The tensorial nature of the various curvature related objects considered here concretely implies that
if or hold in one coordinates system, then they hold in any coordinates system. This is
the relativity principle. The equivalence principle, made famous by Einstein’s thought experiment,
translates mathematically to the existence of normal coordinates along a geodesic (since in such
coordinates the Christoffel symbols vanish and the geodesic equation is simply & = 0).
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In order to define the divergence of a tensor, we first define D : T?(M) — T2 (M) by
DT(Xo, X1,...,Xs) =Dx,T(X1,..., Xs).
If now T' € T2(M) with s > 1, we define its divergence to be the (0,s — 1)-tensor defined by
divT = C12(DT).
Proposition 2.2. We have
div (Ric - ;Rg> =0.
Proof. We first note that
div(fg) = C12(D(fg))
=C12(f/Dg+Df®g)

=Cnp(dfeg)
=df,

where we used that Dg = 0 and Df = df. Therefore we need to prove that divRic = %dR. We start
from (2.8)

We use (2.4 (which can be shown to also hold for DzRm) for the last term and rewrite the middle
term with the definition of D:

DxRm(V,W,Y, Z) + DRm(Y,V,W, Z, X) — D,Rm(V,W,Y, X) = 0.

Since Dxg~! = 0, we have C1,(DxT) = Dx(C1,(T)) and therefore applying Cj3 to the above identity
gives

DxRic(W, Z) + divRm(W, Z, X) — DzRic(W, X) = 0.
Using the definition of D for the first term this rewrites
DRic(X, W, Z) + divRm(W, Z, X) — DzRic(W, X) = 0.
We now apply Cia to this equality (using again the commutativity with Dyz):
divRic + C13(divRm) = dR,

where we used DzR = dR(Z). Again because of Dg~—! = 0 we can prove that C13(divRm) = divRic,
so that we have proved 2divRic = dR,, which concludes the proof. O

2.3.3 Wave coordinates

If T = 0, then the Einstein equations (2.9)) simplify: contracting Ric = %Rg with g=! gives R = 3R so
that R = 0 (if n > 3). Therefore the Einstein vacuum equations are simply

Ric = 0. (2.10)

In Minkowski spacetime (R'*3 m) the Riemann tensor identically vanishes and thus this spacetime is
an obvious solutions of . If we think of T as the source term in and thus of as being an
equation without source, we might deduce that (R'*3 m) is the only solution to . This is far from
being the case! We give two arguments in favor of the non-triviality of . First, shortly after the
publication of Einstein’s theory of general relativity, Schwarzschild discovered the so-called Schwarzschild
metric

2 om\ !
gSch(1m>dt®dt+<1m> dr ® dr + r’gs,
r r
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where m > 0. By considering more adapted coordinates, this metric can be shown to solve on
the manifold R; x {r > 0} x S? and its Riemann tensor does not vanish (in particular implying that the
Schwarzschild spacetime is not isometric to Minkowski). The physical meaning of gg.p, is the description
of a black hole without rotation, which is thus a non-trivial solution of the Einstein vacuum equations.
However, this argument is not entirely satisfactory since one could see gg., as a solution of with a
measured-valued stress-energy tensor concentrated at r = 0.

The best way to show that (2.10) admits plenty of regular solutions is actually to exhibit its PDE
nature. In order to do so, we define the so-called wave operator associated to any Lorentzian metric g:

Ogf = Crz(Hess(f)),
where Hess(f) is defined in Exercise In local coordinates this becomes

O/ = 8" Hess(f) (0, 95) = 87 (adsf ~TH 50,1 ) -

Note that in the case of Minkowski spacetime in Euclidean coordinates we recover the standard wave
operator J = —07 + A, where A = 9°9;. Note that in the case of a Riemannian metric the very same
definition leads to the so-called Laplace-Beltrami operator Ag, which generalizes A.

Proposition 2.3. In any coordinates system, the Ricci tensor admits the decomposition

. 1 1
Ric,, = —§Dgg,“, + 3 (80 H” + 85,0, H”) + P,,(g)(08, 0g),

where HP := gaﬁfgﬁ and where P,,(g)(0g,0g) denotes terms of the form g~'g~'0gog.

Proof. Since we don’t need the exact expression of the semilinear terms of the form g~ 'g~'0gdg, we
will denote them by O ((g_lag)Q). In coordinates we have:

Ric;w = gaﬂg (8047 R(aﬂa al/)au)
= gaﬁ (g (8047 DBDuau) -8 (aou DVDBaM))
=& (& (90, D5 (1%,9,)) — & (90, Dy (1,0, ) )
= 8"78ap 0817, — 8*780p0,1%5, + O ((g*@g)z)

—_ 2
= 9sT%, — 9,15, + 0 ((g Log) ) .

By differentiating the relation g®” gpy = 05 we find that d,g"" = —g”"'g7"0agp, Which schematically
reads 0g~! = g~ !g~'0g. Therefore, when differentiating the Christoffel symbols, we schematically get
0 (g 'og) =g '0%g+ (g’lé'g)Q. Therefore we have

. 1, _ 2
Ricu, = 38 (950u8aw + 050, 8a — 0308 — DO — 0usap + 0,0u8us) + O ((g ) )
1 1
= _imgguu + igaﬂ (aﬁaugow - avﬁugaﬁ + 8u6aguﬁ) +0 ((gilag)2) )

where we used the fact that Ogf = g*?0,95f + O (g_lg_lagaf). On the other hand we have HP =
gaﬁgpa (%g[sg - %5gga5) and thus

1 1 1 1
9 (gpuaqu + gpua,qu) = §ga6gpg <gpuav <6ag/30 - 2aaga/3) + gpuau ((%gﬂo - 2aoga,6>>
_ 2
+0 ((g Log) )
1 af —1 2
= ig (auaagﬂu + 8u8o¢g,81/ - auaugaﬁ) +0 ((g 8g) ) s
which concludes the proof. O
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The previous proposition shows that if one can construct coordinates (2*),—o,... 3 such that H? =0,
then the Einstein vacuum equations become

Ueguw = 2P, (g) (98, 08).

In the vocabulary of PDEs, this is a system of 10 coupled wave equations for the metric coefficients g,,,,.
This system is nonlinear for two reasons:

e The RHS is a quadratic expression in first order derivatives of the metric dg, such terms are called
semilinear. Though we did not give its exact expression, its structure plays a crucial role in many
problems, such as the long-time behaviour of solutions or the absence of shocks in the evolution.

e The wave operator on the LHS depends obviously on the solution g, such term is called quasilinear.
The existence of gravitational waves can be predicted from this wave operator, even though a proof
of their physicality (i.e that they cannot be erased by a change of coordinates) requires more work.

Coordinates (z”),=0,... 3 such that H” = 0 are called wave coordinates since H” = —gz”. The fact that,
with an appropriate choice of coordinates, the Einstein vacuum equations can be recast as a system of
wave equations hints at a Cauchy formulation of these equations in analogy with the Cauchy formulation
for the standard wave equation

Uu = F,

{(ua atu)l{t:o} = (f7 h)>

where F, f and h are given. Of course, the geometric nature of the Einstein vacuum equations would
require several modifications of (2.11)):

(2.11)

e The hypersurface {t = 0} in Minkowski is replaced by the concept of a spacelike hypersurface X,
i.e a n — 1-dimensional submanifold of M with timelike normal vector field N.

e Similarly, u| (i—oy 18 replaced by the induced metric g),, on the hypersurface, and 9;u, (10} 18 replaced
by the Lie derivative Lyg),, (since Dyg = 0 we cannot use the Levi-Civita connection here).

Another consequence of the geometric nature of general relativity is that the Cauchy data (g, Lng)|,,
cannot be freely chosen, they need to solve the so-called constraint equations. This distinguishes dras-
tically the Einstein vacuum equations from , where (f,h) can be freely chosen. Nevertheless,
understanding the existence, uniqueness and behaviour of solutions to (and its semilinear and
quasilinear generalisations) is a necessary prerequisite to the study of the Einstein vacuum equations
and their solutions.

2.4 Exercises
Exercise 2.1. Let M be a smooth manifold and D and D two connections.
1. Show that
(w, X,Y) € A" (M) x (T(M))? — w (DxY — Dy X — [X,Y])
defines a (1,2)-tensor (called the torsion tensor of D).
2. Show that
(w, X,Y) € AL(M) x (D(M))? —s w (DXY - ﬁxy)
defines a (1,2)-tensor.

Exercise 2.2. Let (R3,geucl) be the 3-dimensional Fuclidean space. Compute the components of Seyel
and the Christoffel symbols in spherical coordinates.

Exercise 2.3. Let (M,g) be a pseudo-Riemannian manifold and f € C*(M). We define another
pseudo-Riemannian metric § = e>fg. Give the expression of D, the Levi-Civita connection associated to
g, in terms of D, the Levi-Civita connection associated to g.
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Exercise 2.4. Let (M,g) be a pseudo-Riemannian manifold and X € T'(M). Show that the tensor
deriwation Dx satisfies the following properties

(Z) Dxg=0 and DXg_1 =0.

(i) It commutes with the musical isomorphisms (hint: rewrite them with standard contractions and
tensor product).

Exercise 2.5. Let (M, g) be a pseudo-Riemannian manifold and f € C*>°(M). We define the Hessian
of f by Hess(f)(X,Y) =Dxdf(Y) for X, Y € I'(M). Show that Hess(f) is a symmetric (0,2)-tensor.

Exercise 2.6. If V € I'(M), we define its curl by
curl(V)(X,Y) = g(DxV,Y) — g(DyV, X).
1. Show that curl(V)) = dV® where d is defined in Ezercise .
2. Define gradf = (df)* and show that curl(gradf) = 0.

Exercise 2.7. If X € T'(M), we define its divergence by divX = divX?, where X" is seen as a (0,1)-
tensor.

1. Compute the expression of divX in coordinates.
2. Show that Og f = div(gradf).

3. Show the alternative expression

1
; - _ B
divX _detgaﬂ (\/ det g X ) ,

where det g denotes the determinant of the matriz (8a8)o<a,8<3-

Exercise 2.8. Let (M,g) be a pseudo-Riemannian manifold.

1. Let ¢ € C*®(M) such that Ogp = 0 and define the scalar field stress-energy tensor

1
T =dp®dy — ;glgrady, grade)g.

Show that divT = 0.

2. Let F be an antisymmetric (0, 2)-tensor satisfying the Mazwell vacuum equations

:DoéFﬁ7 + DﬂFya + DyFa@ =0,
divF = 0,

and define the electromagnetic stress-energy tensor
af 1 ap Lo
T = 8" Fualyp — Zgwg 8" FapFpo.

Show that divT = 0.
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Chapter 3

Correction of the exercises

3.1 Exercises from Chapter 1

Exercise 3.1.

1. Since each point on S? has at least one non-zero coordinates, we indeed have

3
s? = Jw;uvy).
j=1
The maps @; are homeomorphisms from U; to the open disk D := {(x,y) € R? ’ 22 +9? < 1} and
Jfrom V; toD. For instance, the inverse of o1 : Vi — D is given by gpfl(x, y) = (—\/ 1—22—92 1, y)

Therefore ((Ut, 1), (U2, 2), (Us, @3), (V1,01), (Va,92), (V3,3)) is an atlas for S?. To prove that
it makes S® a smooth manifold we only need to show that the transition maps are smooth where
they are defined (since the Hausdorff property is obvious). Note that U;NU; #0, V;NV; # 0 and
U;NV; # 0 if and only if i # j. Therefore, there are 12 intersections to consider and thus 24
transition maps to consider. We only treat three of them:

e Consider (U, 1) and (Us,p2). We have U N U = {(2',2?,2%) € $? | 2!, 2% > 0} and if
(z,y) € p1(U1 NU3) then

p2007 (2, ) = p2 (vl—IQ—yQ,x7y> = (\/l—fEQ—yQ,y)-

o Consider (Va,2) and (Vs,p3). We have Vo N V3 = {(z',2%,2%) € §* | 22,2% <0} and if
(x,y) € p2(VaNV3) then

@30 05 (2,y) = ¢3 (rc,f lfony,y) = (aaf\/lfoyQ)-

e Consider (Vi,¢1) and (Us,¢3). We have Vi NUs = {(z',2%,23) € §? | 2! <0, 23 > 0} and
if (z,y) € p3(Vi NUs) then

p1095 (z,y) = ¢1 (%y?\/l—x?—zﬁ) = (yvvl—fﬂz—zﬂ).

All these maps are smooth so S? with this atlas is a smooth manifold.

2. We obviously have S* = Uy UUs. The map 1 is a homeomorphism from Uy to R? with inverse

2z 2y 9:2+y21>

1 _
or(Ty) = <962—|—y2—|-1’:102—i-y2—&-17 2 +y?+1
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The map 2 is a homeomorphism from Us to R? with inverse
w_l(z y) = 2x 2y 1—22—9? '
S 2?42+ a2+ 24+ U a2 +y2 4+ 1

Therefore ((Uy, 1), (Ua, ¢2)) is an atlas for S*. We have Uy N Uz = S*\ {(0,0,1),(0,0,—1)} and
(U NUy) = R2\ {(0,0} fori=1,2. Moreover for (x,y) # (0,0) we have

1 _ —1 _ r Yy
w20 (T,y) = w109y (T,y) (x2+y2’x2+y2>7

which is a smooth function. Therefore S? with this atlas is a smooth manifold.
3. We can generalize both examples to S™ for n > 1.

e Define UjjE ={(a},...,2a" ) es" ’ +2 >0} andg; ((2',...,2"h)) = (!, ... 2d 7 23t
We can show that (Ui, 1), ..., (U1 @nt1), (U 91), - (Upy1, i) is an atlas making
S™ a smooth manifold composed of 2(n + 1) charts.

e Define UT =S"\ {(0,...,0,%+1} and

n n I]Sl "
@i((zl,...,x , T +1))—( .. >

LFontl’ 7 1 F gnt!

We can show that (U™, ™), (U™, ¢7)) is an atlas making S™ a smooth manifold composed
of 2 charts.

Exercise 3.2.

1. We first note that f is non-zero and smooth (which can be proved by induction on the derivatives
%) of f) and that suppf = [~1,1]. Differentiating under the integral symbol (using integrability
of smooth functions on compact sets) we can also prove that h is smooth. Changing variable we
rewrite h as

1 t+2

B fRf t—2
which already shows that 0 < h < 1. Moreover if [t| > 3, then [t —2,t+2] N [-1,1] = 0 so that

h(t) = 0. Finally, if [t| < 1, then [~1,1] C [t — 2,t + 2] and thus [ f = [, f so that h(t) = 1.

h(t) f

2. We start by dilating h: for ¢ > 0 we define ho(t) = h(ﬁ) It is a smooth function satisfying
0 < he <1, supp(he) C [-3¢,3¢] and by ___, = 1. Now, let p € M and U a neighborhood of
p. Let (V,p) a local chart around p such that V. C U. If e > 0 is sufficiently small, we have
By, = {x eER™ | ||z — go(p)||§ < 45} C @(V). On'V we can define N(q) = >1, (¢ (q) — Jci(p))2
so that ¢~ (B,) = {q€V | N(q) <n} for alln < 4e. We set x = heo N on'V and x = 0
elsewhere. On ¢~*(B.) we have N < ¢ so that x =1 on ¢~ Y(B.) (which is indeed a neighborhood

of p), and suppx C U. Finally the smoothness of x follows from the smoothness of he and the fact
that there is only one local chart to check.

Exercise 3.3.

1. Since ¢(0) = p and ¢ is defined in a neighborhood of p, the function ¢ o c is well-defined on
a neighborhood of 0 for every ¢ € CpM and (¢ o ¢)'(0) is well-defined (since both ¢ and ¢ are
smooth). Moreover if ¢ and 1 are two local charts around p, we have poc = pop~torpoc so that
the chain rule in R™ implies

(50 © C)/(O) =d (‘P © ¢_1)w( ) ('(/) o 6)1(0)7

where d (cp o dﬁl)w(p) is the standard differential of the function @ o~1 at y(p) € R™ (remember

that (¢ o ¢)'(0) and (1 o ¢)'(0) are vectors in R™). However, since the transition maps ¢ o ="
are supposed to be smooth diffeomorphisms (where they are defined), their differential is a linear
isomorphism and

p

(poc1)'(0) = (po0)'(0) <= (o) (0) =(¥oc)(0).
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2. For c € CyM we denote by [c], € Tvp/\/l the equivalence class of c. For c,ci,co € CobM and A € R
we define

[e1]p + [ealp = [¢ 7 o (pocr + o c)]
Melp = [¢7" o (Apo0)]

We need to show that the right hand sides don’t depend on the representant, i.e that if ¢ ~ ¢1 and
Cco ~ Gy then

o lo(poci+pocy)~pto(poé +pods).

“lo(poci+poca) =poct+poca, the linearity of the derivatives of a function from

Lo (Apoc) ~

Lo(Ap o &). Therefore the above operations are well-defined on Tp/\/l. All the algebraic properties
that a vector space meed to satisfy are obvious, except maybe who is the zero element for +: it
is the equivalence class Oz ,, of the constant path c(t) = p, and we indeed have [c|, + [0], =

[<p_1 o(poc+ @(p))]p = [c], since p(p) = 0.

Since o
R to R™ implies what we want. An identical reasoning proves that if ¢ ~ & then ¢~

3. For [c], € T,M we define ¥ ([d],) € T,M to be the derivation at p defined by

¥ ([clp) (f) = (f 2 ¢)'(0)

for all f € C*(M). We first need to show that (f oc)'(0) does not depend on the representant in
the equivalence class [c],. We compute using again the chain rule:

(foe)(0)=(fop topoc)(0)
= 0i(foe™ ) (p()r" ((poc)'(0))
= aa;ﬂp (f)’/T ((90 © C)/(O)) ’

where (z%);=1_ . is associated with . Therefore, if ¢ ~ co then (f oc1)'(0) = (f o c2)'(0) and
V:TyM — TyM is a well-defined map. The linearity of ¥ follows from

U ([er]p + [ealp) (F) = (fow™ o (poer +poc))(0)
= 01, (/)" ((po e+ poea)(0)

i1, ()T ((poe1)(0) + By, (f)m' (w0 c2)'(0))
= (lealp) () + ¥ ([ealp) ()

and

U (Alelp) (f) = (foe™ o (Ap o) (0)
1, (N7 (Apoc)'(0)
= 041, (/AT (90 €)' (0))

= AV ([dp) (f),

where we used the linearity of ™ and of the derivatives for a function from R to R™. It remains to
prove that ¥ is an isomorphism. A previous computation shows that

U ([dp) = 7" (9 0¢)'(0)) Dy,

Ifj=1,...,n andc]( )= 1(0,.. ..., 0) (where the t is in the j-th slot) then 7 ((¢ o ¢;)'(0))
6! and ¥ ([ ilp) = Ouil, - Smce (8$J|p ., is a basis of T, M and V is linear this shows that ¥

is surjective. Moreover, if ¥ ([c|,) = O then (poc)'(0) =0. However, if we denote cq the constant
path equal to p, then (poc) (0) =0 and thus ¢ ~ ¢o i.e [c]p, = [co]p = 07 aq- This shows that W is
injective.
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Exercise 3.4.

1. We use the definition of the Lie bracket of two vector fields as the following derivation of smooth
functions:

(X, Y](f)(p) = X(Y(£))(p) = Y (X () (p)-

The three identities then follow from straightforward computations.

2. We prove that the two sides of the identity have the same action on any smooth function f. Using
the Leibniz rule we have

[f X, gY](h) = fX(gY () — gY (fX(h))
= f9X(Y(h)) + [X(9)Y (h) — gfY (X (h)) = gY ()X (R)
= f9lX,YI(h) + fX(9)Y (h) — gY (£) X ().

3. We use the local expression of X and Y, the first identity of the first question and the second
question:

zn: X0, Z Y70,
=1 =1
> X040, Y70,

(Xiyj [8xi76xj] + X‘&al (Yj)axj - Yjaxj (Xl)axz) .

Il
INg

However, using the definition of the 0, we have

051 (01 [)(p) = 0si),, (s f)
=0; (02 f o) (p(p))
= 8:0;(f o ") (e(p))
so that the standard formula 0;0; = 0;0; in R™ implies [0yi,0pi] = 0 on M. Therefore, we obtain

(X, Y] = X(Y9) - Y(X).

Exercise 3.5.

1. Since dw(X,Y) = —dw(Y, X) we only need to check C°°(M)-linearity with respect to the first
argument. Let f € C®(M), using w(fX) = fw(X) and [fX,Y] = fI[X,Y] = Y(f)X (see the

previous exercise) we obtain

dw(fX,Y) = fX(w(Y)) = Y(w(fX)) - w([fX,Y])
= fX(w(Y)) - Y(fw(X)) —w(f[X, Y] = Y(f)X)
= fX(w(Y)) = fY(w(X)) = Y (f)w(X) = fw(f[X,Y]) + Y (f)w(X)
= fdw(X,Y).

2. According to the previous question we only need to check the C°°(M)-linearity with respect to the
1-form. Using the definition of the differential of a smooth function df(X) = X(f) we find

d(fw)(X,Y) = X(fwu(Y)) = Y(fw(X)) - fu([X,Y])
= df(X)w(Y) —w(X)df(Y) + fdw(X,Y)

so that d(fw) =df @ w —w @ df + fdw and d : (w, X,Y) € AL (M) x (T(M))* — dw(X,Y) is
not C*°(M)-linear with respect to its first argument and thus does not define a tensor.
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3. Using df(X) = X(f) we obtain

ddf(X,Y) = X(df(Y)) = Y(df (X)) - df([X,Y])
= XY () = Y(X(f) - X, Y](f)
=0,

where we used the definition of the Lie bracket. This shows that ddf = 0.
Exercise 3.6.
1. For the coordinate vector fields, we compute their action on any f € C°(M). If p € M we have
O () (P) = Oy, (f)

=0i(foe (o)
=0i(fov  ohop ) (p(p)).

Using the chain rule in R™ and Finstein’s summation convention we obtain

so that
0= (0, (s 0 ) o) Oy (31)

For coordinate 1-forms, we start with the local expression of any I1-form applied to dx’:

dz® = da (ayk) dy*.
Using the symmetric version of we compute

dz’ (Or) = (O, (zf 0 yp™1) 0 p) dz' (Oye)

= (ak (me ) w_l) o 1/1) 5t

=0, (e o v ) o
so that

dzt = (ak (xl o wil) ) ¢) dy*. (3.2)

2. We use the following notations for the components of T in the two coordinate systems (z');i=1,. n
and (yi)i:L...,n-‘

T = T (da™t, . da'™, Oy O ), T =T (dyil,_._,dyir,a ;17,__,%5) ,

JiJs JiJs Y
Now using (3.1) and (3.2) and the C°>°(M)-multilinearity of tensors we obtain
Ty = (0 (@ ev™) o) x oo x (3 (2t 0w o)
X <8j (yjl o<p_1) o <p> X oo X (3j (yjs o<p_1) o gp)

X T,
Jids

In particular, T wvanishes in the coordinate system (xz)lzln (i.e T;f;: = 0 for all choices of

indices) if and only if it vanishes in the coordinate system (y%)i=1.. . n-
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Exercise 3.7. Let (v1,...,v,) be a basis of T,M and (vf,...,v;) be the dual basis of Ty M, i.e the only
basis of Ty M satisfying v (v;) = d;j. We define flp to be the only endormorphism of T, M such that

n

Ap(vy) = ZAp(vj,vl)vj.

j=1
In the basis (v1,...,v,), the matriz representing A, is (Ap(v7,5))1<; j<n and thus the trace of A, is
iy Ap(vf, v;) which indeed matches C1(A)(p) and does not depend on the basis of T, M.

Exercise 3.8.

1. According to the lecture motes, it suffices to show that Lx is a derivation on vector fields. Using
the second question of Exercise[I.]] we obtain

Lx(fY)=[X, fY]
= fIX. Y]+ X(f)Y
— (Lx /)Y + fLxY.

2. The set of tensor derivations is a vector space so that alLx + Ly is again a tensor derivation.
Therefore we are asked to prove that two tensor derivations are equal, and thanks to Lemma 1.5
in the lecture notes it is enough to check that they coincide on functions and vector fields, which is
completely obvious. Similarly, one can show that the Lie bracket of two tensor derivations is again
a tensor derivation (as we did for derivations of functions when we defined the Lie bracket of two
vector fields). We have Lix y1f = [X,Y]f and [Lx,Ly]f = X(Y(f)) = Y(X(f)) so Lix,y) and
[Lx,Ly] coincide on functions by definition of the Lie bracket. Moreover we have Lix y)(Z) =
(X, Y], 2] and
where we used the Jacobi identity for the Lie bracket. Therefore Lix y) and [Lx,Ly] coincide on

vector fields and are thus equal thanks to Lemma 1.5.

3. Let Y € T'(M), we compute the two sides. By definition of the differential of the smooth function
Lxf=X(f) we have

(AL /)(Y) = Y(Lxf) = V(X(f).
By definition of a tensor derivation we find
(Lxdf)(Y) = X (Y () —df([X,Y]) = X(Y(f)) = [X, Y](F).
Finally, by definition of the Lie bracket we get
(Lxdf)(Y) = XY (f)) - XY (f) +Y(X(f)) = (dLx [)(Y).
4. Let W, Z € T'(M), we compute
dLxw(W, Z) = W (Lxw(Z)) = Z (Lxw(W)) = Lxw((W, Z))
=W(X(w(2)) = Z(X(w(W))) =W (w([X, Z])) + Z (w([X, W]))
— X(w([W, 2])) + w([X, [W, Z])),

where we used the expression of Lxw(Z) = X(w(Z)) —w([X, Z]) (recall the definition of the Lie
derivative on functions and vector fields). We commute W and X and Z and X in the first two
terms:

dLxw(W, Z) = X (W(w(2))) + [W, X](w(2)) = X (Z(w(W))) + [X; Z](w(W))



where we recognized the expression of dw(W, Z) and also used the Jacobi identity for the Lie bracket
(first question of Exercise . Using again the definition of d we get

dLxw(W,Z) = X (dw(W, Z)) — dw([X, W], Z) — dw(W, [X, Z]) = Lxdw(W, Z).

Exercise 3.9.

1. If such Dp ezists, let us show that Dp(f) =0 for all f € C*°(M). Let f € C*(M), X € (M),
the Leibniz rule gives on the one hand (Dp)(fX) = f(Dp)(X) + Dp(f)X. On the other hand the
condition Dpy. ., = (Dg)y implies that DB|pipy 18 C(M)-linear so that (Dp)(fX) = f(Dp)(X).
Therefore we have Dp(f)X = 0 for all f and X, which shows that Dg|eospny = 0. Lemma 1.5 of
the notes then shows the existence and uniqueness of Dg € D (M) such that Dg|eoopry = 0 and

DB'F(M) = (Dp)s-

2. We need to show that the map (X,B) € T'(M) x TH(M) — Lx + Dp € D(M) is a linear
isomorphism:
o The linearity follows from the linearity of X — Lx and B — Dp.

o Assume that (X, B) € T(M) x T(M) is such that Lx + Dp is the zero tensor derivation.
Since DB oo pyy = 0 we obtain X(f) =0 for all f € C>°(M) which shows that X =0 and
Dp = 0. Since Dy, = (D)} this implies (Dp)§ = 0 and thus B = 0. This shows that the
map (X, B) — Lx + Dg 1s injective.

e Let D € D(M). Since derivations on functions are the same as vector fields there exists
a unique X € I'(M) such that D(f) = X(f). Set D =D — Lx. We have D| o, = 0
which implies that D), ,,, is C>°(M)-linear (thanks to the Leibniz rule for D). For (w,Y) €
AY (M) x T(M) we define B(w,Y) = b|F<M)(Y)(w) which defines a (1,1)-tensor since it is
indeed C°°(M)-multilinear. By construction we have f)‘r(M) = (Dp){ so that the uniqueness
part of the previous question implies D = Dp and D = Lx + Dp. This shows that the map
(X, B) — Lx + Dp is surjective.

We see in fact that the Lie derivative is quite superfluous here and we could get the same result
with say the covariant derivative Dx from Chapter 2.

3.2 Exercises from Chapter 2
Exercise 3.10. The spherical coordinates are (r,0,¢) such that the Euclidean coordinates (x',xz?% x3)
are given by

zl =rsinfcosp, x°=rsinfsing, x> =rcosh.

We want to compute g(0yr, 0y), g(0r, 0p) etc. (where we denote geyer simply by g), therefore we would like
to express the coordinate vector fields of (r,0, ) in terms of the coordinate vector fields of (zt, x?%, x3).

For this we use the formula (3.1)) of Exercise :

Oyi = (8i (mz o ¢_1) ow) Ope .
where (yi)izl _____ n are associated to . The definition of the spherical coordinates is
ztop™(r,0,¢) = rsinfcos¢, x?op 1 (r,0,p) =rsinfsing, oy (r,0,¢)=rcosé,

which is equivalent to saying that 1 (rsin 6 cos ¢, rsin O sin ¢, r cos @) = (r, 0, ¢). Therefore we have

Or = Oy (rsinf cos ¢) dp1 + Oy (rsindsin @) d,2 + 0y (rcos ) 0,3
= sin 6 cos ¢0,1 + sin 0 sin 9,2 + cos 00,3,
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09 = Op (rsin 6 cos ¢) Dpr + Op (rsin O sin @) D2 + 9p (1 cos ) O,s

= rcos 6 cos ¢0,1 + r cos fsin ¢pd,2 — rsinH0,s,

0p = Oy (rsinf cos @) Oy1 + Oy (rsinfsin @) Oy2 + Oy (r cos §) O3
= —rsinfsin ¢d,1 + rsin 6 cos ¢0,2.

Therefore, using g(0yi,0yi) = 0;; we get for instance

rr = g(aru ar)
= sin? 0 cos? ¢ + sin? 0 sin? ¢ + cos? 0

=1

2

The other nmon-zero components are ggg = 1> and gpp = T sin®#. Moreover, one can check that the

non-zero Christoffel symbols are

1
—— [y =1 sin? @), Iy = -
1 cos @
. o 1 o _
[y, = —sinf cosb, Fm—Tv I‘M_sinﬁ

Exercise 3.11.

1. The C°°(M)-linearity with respect to the 1-form is obvious, so we only need to check the C*°(M)-
multilinearity of (X,Y)— DxY — Dy X — [X,Y]. Let f € C°°(M), using the Leibniz rule for D
and a property of the Lie bracket we obtain

Dx(fY) = Dpy X — [X, fY] = X(f)Y + fDxY — fDy X — fI[X,Y] - X(f)Y
= f(DxY — Dy X — [X,Y]).

Since (X,Y) — DxY — Dy X — [X,Y] is antisymmetric this also proves that DyxY — Dy (fX) —

2. The C°°(M)-linearity with respect to the 1-form and the first vector field is obvious, so we only
need to check the C°°(M)-linearity of Y +—— DxY — DxY for X fized. Let f € C*°(M), using
the Leibniz rule for D and D we obtain:

Dx(fY) = Dx(fY) = X(f)Y + fDxY = X(f)Y = fDxY = (DxY - DxY).

Exercise 3.12. Let (z%), be a local coordinate system. If we denote by T the Christoffel symbols of &
we have

~ 1. B B B
Fﬁv = igaﬁ (a,uguﬂ + aug/tﬂ - aﬁg/w)

= 2 (D + v — Dpsn) + o8 (O ) + (D0 )5 — (05 F)m)
=T%, 4+ 0650uf + 050, f — 8u g™’ sf.
Therefore if X, Y € T'(M) we have
DxY® = X(Y*)+ X'Y"T%,

=DxY* + X(/)Y* +Y(f)X* —g(X,Y)g" 95 f.

This shows that DxY = DxY + X(f)Y + Y (f)X — g(X, Y)gradg f.
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Exercise 3.13. For the second part of the lemma we start with the formula for Dxg(Y,Z) obtained
with Proposition [1.3:

Dxg(Y,Z) =Dx (g(Y,2)) —g(Dx(Y),Z) — g (Y,Dx(Z))
=X (g(Y,2)) —g(DxY,Z)—g(Y,DxZ2)

where we have used the definition of the tensor derivation Dx . This is precisely identically zero thanks
to the compatibility of the Levi-Civita connection with g. Now let us prove that Dxg™' = 0. We have
Ci(g=! @ g) = Id and one can show that DxId = 0 (actually this is true for any tensor derivation)
so that the commutation with standard contraction, the Leibniz rule and the fact that Dxg = 0 gives
Ci(Dxg ' ®g) = 0. The non-degeneracy of g then implies that Dxg~! = 0. Finally, rewriting the
mustcal isomorphisms with contractions and tensor product we obtain

DxY’ =Dx (C}(Y ®g))
=C] (Dx(Y ®g))
=Ci (DxY ®g)
= (DxY)’,

where we used the commutation of any tensor derivation with contractions and the fact that Dxg = 0.
An almost identical computation shows that D xw# = (Dxw)? (using Dxg~' = 0 this time).

Exercise 3.14. By definition of a tensor derivation we have
Hess(f)(X,Y) = X(df(Y)) — df(DxY) = X(Y(f)) - DxY(f),
where we also used the definition of the differential. Therefore

Hess(f)(X,Y) — Hess(f)(Y. X) = X (Y (f)) = DxY(f) = Y(X(f)) + Dy X(f)
= ([X,Y] -DxY + Dy X) (f)
=0,
where we used the torsion free property of the metric.
Exercise 3.15.
1. By definition of d and of the musical isomorphisms we have
AV’ (X,Y) = X(V*(Y)) - Y(V’(X)) = V*([X,Y])
= X(g(V,Y)) =Y (g(V, X)) — g(V, [X,Y]).
Using now the compatibility if D with g and its torsion free property we get
dV’(X,Y) =g(DxV,Y) —g(DyV,X) +g(V,DxY —Dy X — [X,Y])
=gDxV.Y) —g(DyV, X).

2. Thanks to the first question we have curl(gradf) = d(gradf)’. Thanks to the definition of the

gradient we get curl(gradf) = d ((df)#)b. Thanks to the properties of the musical isomorphisms
we get curl(gradf) = ddf = 0 where we also used a result from Exercise .

Exercise 3.16.
1. By definition of the divergence of the 1-form X we have in coordinates
divX = g*¥D,X"(9;3)
= g7 (0a(X"(95)) ~ X’ (Dad)y))
=g’ (aaXﬁ - I‘ZBX#> )

where we use the standard shortcut X, = (X°),.
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2. If X = gradf then by definition of the gradient we have X’ = df and Xo = Oaf so that
div(gradf) = g* (0,05 — TVi0,f ) = Ogf.

3. We have

;85 (\/fdethﬁ) =93X° +

—doig Op (s/fdetg)

Ogdetg.

—detg

ZagXﬁ—i-

2det g

Using the Jacobi formula for the differential of the determinant we obtain 03 det g = det gtr (g_lagg)
where here g denotes its matriz representation and g~ its inverse. Therefore g det g = det gg" g,
and

1 XA
_— N/ — B = B mz
fdetgaﬁ( detgX ) O X” + 5 8 0880

(0% 1 v
=g ﬁaﬁXa + Xp <85gpﬁ + igﬁpgu 3ng) ,
where we used XP = gﬁpo. Thanks to the expression of the Christoffel symbols we have

1 1
9pg”” + §gﬂpg"”8ﬁgw = 58" (—28°“0p8a0 + 8" o) = —8"T%,,

so that we obtain
1

_ B\ — B e _
e (\/Ttgx) %9, X, — g%, X, = divX.

Exercise 3.17.

1. Since div(fg) = df we need to prove that div(dy ® dy) = 1d (g(grady, grady)). For the LHS we
find

D(de © dp)(X,Y, Z) = Dx(dp @ dp)(Y, Z) = Hess(p)(X,Y)dp(Z) + Hess(p) (X, Z)dp(Y)
so that

div(dy © dp)(Z) = Cra(Hess(¢))dp(Z) + Cr2(dp @ Hess(¢))(Z) = Cra(dp @ Hess(¢))(2)
where we used C12(Hess(¢)) = Ogp = 0. For the RHS we have

1 1
4 (g(gradyp, grady)) (Z) = 22 (g(grady, grady)) = g(Dzgrady, grady).

Using the musical isomorphisms we get D zgradp = Dz (dp)# = (Dzdgp)# and thus this rewrites

%d (g(grady, grady)) (Z) = g~ (D zdyp, dp)
= g’ D ;dp(0,)dep(9s)
= C12(dy ® Hess(9))(2)

where we used the symmetry of the Hessian. This concludes the proof.

2. We compute using the expression of the divergence of a symmetric (0,2)-tensor in coordinates and
use several times Dxg =0 and Dxg~' = 0 and te Leibniz rule :

divT, = gD, T,,
(o7 1 (e} (e
= g’Yﬂg BD'y (ELaFyﬁ) - Zg pgﬁ Du (FaBFpa)

(0% (07 1 {07 g 1 (0% g
= g’YMg BF,uaD'yFyﬁ + g BFuBg’YMD'yF;La - Zg pgﬁ FaﬁDquo - Zg pgﬂ FpaDuFaB~
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The second term vanishes because of the second Mazwell equation, the third and fourth are the same
so that

: « 1 « o
divTl, = g’Yﬂg BF,uaD'yFuB - ig pgﬁ FaﬁDqua

1
= F’YIB <D7Fyﬂ —|— 2D,/Fﬁry) 5

where we also used the antisymmetry of F and defined F78 := ngwg"‘ﬁ. Note that the antisym-
metry of F implies F7% = —FPY. We now contract the first Mazwell equation with F75:

F7"D, Fy + FPDyF,, + F*D,F,5 = 0.

Thanks to the antisymmetry of Fo3 and FoB the middle term becomes FWDBFW = FfB"VDgF,,7
which is the same as F’YBDWFV[;, i.e the third term. Therefore we have proved F'YBD,,F[;A, +
2F7PD., F,5 = 0 which precisely implies divI = 0.
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